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Abstract

In this paper we define classes of impasse points, an important phenomenon of Differential-
Algebraic Equations (DAEs). Focussing on DAEs occuring in the analysis of electrical networks,
a brief discussion of properties of these classes and examples are given. Some of these examples
are counterexamples to published assertions on impasse points.

1 Basic Definitions

1.1 Definition (DAE): Let m ∈ N, n ∈ N+, X ⊆ Rn, Y ⊆ Rm be open sets and T ⊆ R an open
interval. Let f :T ×X ×Y → Rn ∈ C0 and g:T ×X × Y → Rm ∈ C0. The system

ẋ(t)

0

=

=

f (t, x(t), y(t))

g(t, x(t), y(t))
(1)

is called a Differential-Algebraic Equation (DAE). (1)
2

1.2 Definition (ADAE): Let m ∈ N, n ∈ N+, X ⊆ Rn, Y ⊆ Rm be open sets and f :X× Y →
Rn ∈ C0 and g:X × Y → Rm ∈ C0. The system

ẋ = f (x, y)

0 = g(x, y)
(2)

is called an autonomous Differential-Algebraic Equation (ADAE). (1)
2

The DAE’s to be considered here are sometimes called semi-explicit DAE’s.

1.3 Definition (Solution): Let ϕ: I → X × Y ∈ C0, (t0, x0, y0) ∈ T ×X ×Y . ϕ is said to be a
solution of (1) (resp. (2)) :⇐⇒

(i) I ⊆ T (resp. I ⊆ R) is open and connected.

(ii) prx ◦ ϕ ∈ C1

(iii)
∀t∈I D(prx ◦ ϕ)(t) = f (t, ϕ(t)) ∧ 0 = g(t, ϕ(t))

(resp. 0 ∈ I ∧ ∀t∈I D(prx ◦ ϕ)(t) = f (ϕ(t)) ∧ 0 = g(ϕ(t)) )

where prx:Rn×Rm → Rn denotes orthogonal projection.

ϕ is called a C1-solution of (1) (resp. (2)) :⇐⇒ ϕ is a solution of (1) (resp. (2)) and ϕ ∈ C1.

The solution set S of (1) (resp. of (2), C1-solution set SC1 of (1), C1-solution set of (2)) is defined by

S := {ψ|ψ is a solution of (1)}
(resp. S := {ψ|ψ is a solution of (2)}

SC1 := {ψ|ψ is a C1 − solution of (1)}
SC1 := {ψ|ψ is a C1 − solution of (2)})

The solution set (resp. C1-solution set) of (1) according to the initial condition (t0, x0, y0) (S(t0,x0,y0),
resp. SC1,(t0,x0,y0)) is defined by

S(t0,x0,y0) := {ψ ∈ S|ψ(t0) = (x0, y0)} (resp. SC1,(t0,x0,y0) := {ψ ∈ SC1 |ψ(t0) = (x0, y0)})
(1) In case m = 0 we identify (1) and (2) with ODE’s ẋ(t) = f(t, x(t)) and ẋ = f(x), respectively.
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The solution set (resp. C1-solution set) of (2) according to the initial condition (x0, y0) (S(x0,y0), resp.
SC1,(x0,y0)) is defined by

S(x0,y0) := {ψ ∈ S|ψ(0) = (x0, y0)} (resp. SC1,(x0,y0) := {ψ ∈ SC1 |ψ(0) = (x0, y0)})

ϕ is called a solution (resp. C1-solution) of (1) (resp. (2)) passing through (x0, y0) at t0 (resp. at 0)
:⇐⇒

ϕ ∈ S(t0,x0,y0) (resp. ϕ ∈ SC1,(t0,x0,y0), ϕ ∈ S(x0,y0), ϕ ∈ SC1,(x0,y0))

2

As in [3], C1-solutions are sometimes called classical solutions.
One could define a kind of solution without pry ◦ ϕ being continous. But such solutions do not
seem to make too much sense in engineering (see [1, system (49)]). (2)

1.4 Definition (Consistent Initial Value, State Set): Consider DAE (1) and ADAE (2) and
let S and S̃ be the solution sets of (1) and (2). The sets

P := {z ∈ T ×X ×Y |Sz �= ∅} and P̃ := {z ∈ X × Y |S̃z �= ∅}
(resp. PC1 := {z ∈ T ×X ×Y |SC1,z �= ∅} and P̃C1 := {z ∈ X × Y |S̃C1,z �= ∅})

are called state sets (resp. C1-state sets) of (1) and (2).
Elements of P and P̃ (resp. PC1 and P̃C1) are said to be consistent initial values (resp. C1-consistent
initial values) of (1) and (2). 2

1.5 Remark: (i) In the following, we use S, SC1 , P , PC1 etc. for both, DAE (1) and ADAE
(2).

(ii) PC1 ⊆ P ⊆ g−1(0), SC1 ⊆ S, and ∀z∈T ×X× Y SC1,z ⊆ Sz (resp. ∀z∈X× Y SC1,z ⊆ Sz).

(iii) P = ∪ψ∈S im〈id |domψ , ψ〉 and PC1 = ∪ψ∈SC1 im〈id |domψ, ψ〉 in case of DAE (1),
P = ∪ψ∈S imψ = {ψ(0)|ψ ∈ S} and PC1 = ∪ψ∈SC1 imψ = {ψ(0)|ψ ∈ SC1} in case of ADAE
(2).(3) 2

2 Impasse Points

2.1 Definition (Impasse Point): Consider DAE (1) (resp. ADAE (2)) and let Q := T ×X × Y ,
(t0, x0, y0) ∈ R×Rn×Rm, and p = (t0, x0, y0) (resp. Q := X × Y and p = (x0, y0)). Let further
S, SC1, P , PC1 the sets defined in section 1. p is called

impasse point (resp. C1-impasse point) of the 1st kind (IP-1, resp. C1-IP-1) :⇐⇒

p ∈ g−1(0) \ P (resp. p ∈ g−1(0) \ PC1)

impasse point (resp. C1-impasse point) of the 2nd kind (IP-2, resp. C1-IP-2) :⇐⇒

p ∈ (P ∩Q) \ P (resp. p ∈ (PC1 ∩Q) \ PC1) (4)

(2)We do not deal with ”Jump Behaviour” here. If we did, we had to consider solutions which are not even continous.
(3)dom: domain of a mapping, im: image of a mapping.
(4)Here, P denotes the closure of P in R×Rn×Rm (resp. Rn ×Rm) endowed with the topology induced by some

norm. If P a is the closure of P in the space Q with the topology induced by R×Rn ×Rm (resp. Rn×Rm), one
gets P ∩Q = P a etc.
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forward impasse point (resp. C1-forward impasse point) of DAE (1) (FIP, resp. C1-FIP) :⇐⇒

p ∈ g−1(0) \ P ∧ ∃ψ∈S (supdomψ = t0 ∧ lim
t→t0

ψ(t) = (x0, y0))

resp. p ∈ g−1(0) \ PC1 ∧ ∃ψ∈SC1 (supdomψ = t0 ∧ lim
t→t0

ψ(t) = (x0, y0))

forward impasse point (resp. C1-forward impasse point) of ADAE (2) (FIP, resp. C1-FIP) :⇐⇒

p ∈ g−1(0) \ P ∧ ∃ψ∈S (supdomψ ∈ R ∧ lim
t→sup domψ

ψ(t) = (x0, y0))

resp. p ∈ g−1(0) \ PC1 ∧ ∃ψ∈SC1 (supdomψ ∈ R ∧ lim
t→supdomψ

ψ(t) = (x0, y0))

backward impasse point (resp. C1-backward impasse point) of DAE (1) (BIP, resp. C1-BIP) :⇐⇒

p ∈ g−1(0) \ P ∧ ∃ψ∈S (inf domψ = t0 ∧ lim
t→t0

ψ(t) = (x0, y0))

resp. p ∈ g−1(0) \ PC1 ∧ ∃ψ∈SC1 (inf domψ = t0 ∧ lim
t→t0

ψ(t) = (x0, y0))

backward impasse point (resp. C1-backward impasse point) of ADAE (2) (BIP, resp. C1-BIP) :⇐⇒

p ∈ g−1(0) \ P ∧ ∃ψ∈S (inf domψ ∈ R ∧ lim
t→inf domψ

ψ(t) = (x0, y0))

resp. p ∈ g−1(0) \ PC1 ∧ ∃ψ∈SC1 (inf domψ ∈ R ∧ lim
t→inf domψ

ψ(t) = (x0, y0))

2

In the sequel, the sets of impasse points of the first kind, of the second kind, of forward impasse
points, and of backward impasse points (resp. the corresponding kinds of C1-impasse points) will
be refered to by I1, I2, IF , and IB (resp. IC1,1, IC1,2, IC1,F , and IC1,B).

2.2 Lemma: Consider DAE (1) or ADAE (2). Then

(i) IB ∪ IF ⊆ I2 ⊆ I1

(ii) IC1,B ∪ IC1,F ⊆ IC1,2 ⊆ IC1,1

(iii) I1 ⊆ IC1 2

Proof:

(i) We show (i) only for DAE (1):
Let p = (t0, x0, y0) ∈ IB, then p ∈ g−1(0)\P and ∃ψ∈S supdomψ = t0∧limt→t0 ψ(t) = (x0, y0),
i.e. limt→t0(t, ψ(t)) = p. Since im〈id |domψ, ψ〉 ⊆ P (Remark 1.5), we get p ∈ P , e.g.
p ∈ g−1(0), p �∈ P , and p ∈ P =⇒ p ∈ (P ∩ g−1(0)) \ P ⊆ (P ∩ T ×X ×Y ) \ P = I2.
Let p ∈ I2 = (P ∩T ×X ×Y ) \P . Since g−1(0) is closed (in T ×X ×Y ) and P ⊆ g−1(0), we
get P ∩ T ×X ×Y ⊆ g−1(0) =⇒ p ∈ g−1(0) \ P = I1.

(ii) Equivalent to (i).

(iii) PC1 ⊆ P ⊆ g−1(0) =⇒ I1 = g−1(0) \ P ⊆ g−1(0) \ PC1 = IC1,1. 2

2.3 Remark: (i) As we will see in this section, the kinds of impasse points defined above are
in general different from each other. We will show, at least, that I1 �= IC1,1 (Example 2.9),
IC1,1 �= IC1,2 and I1 �= I2 (Example 2.10), I2 �= IB ∪ IF and IC1,2 �= IC1,B ∪ IC1,F (Example
2.11).
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(ii) One may think about additional assumptions to prove I2 ⊆ IC1,2, IB ⊆ IC1,B , and IF ⊆ IC1,F .

(iii) Another kind of impasse point would be the definition of a BIP with p �∈ P substituted by
the weaker requirement that ψ is not extendable beyond p. 2

Considering DAE (1) (resp. ADAE (2)) in case m = 0, we have, in fact, an ODE:

ẋ(t) = f (t, x(t)) (3)

resp.
ẋ = f (x) (4)

As is well known from the theory of ODE’s, we get P = PC1 = T ×X and P = PC1 = X for systems
(3) and (4), respectively. Thus, impasse points cannot occur in case of ODE’s. We consider that to
be an important difference between DAE’s and ODE’s. However, there are DAE’s being equivalent
to ODE’s (for a definition of equivalence see [4]).

2.4 Lemma: Consider DAE (1) (resp. ADAE (2)) and let p = (t0, x0, y0) ∈ T ×X × Y , p̃ =
(t0, x0), pr:R×Rn×Rm → R×Rn the orthogonal projection, and Dyg = D3g
(resp. p = (x0, y0) ∈ X × Y , p̃ = x0, pr:Rn×Rm → Rn, and Dyg = D2g).
Then

(i) ∃U∈U(p̃) ∃h:U→Y ∈C0 h(p̃) = y0 ∧ ∀u∈U g(u, h(u)) = 0 =⇒ p ∈ P ∧ p̃ ∈ (pr(P ))0 (5)(6)

(ii) ∃U∈U(p̃) ∃h:U→Y ∈C1 h(p̃) = y0 ∧ ∀u∈U g(u, h(u)) = 0 =⇒ p ∈ PC1 ∧ p̃ ∈ (pr(PC1))0

(iii) ∃V ∈U(p) g|V ∈ C1 ∧ g(p) = 0 ∧Dyg(p) bijective =⇒ p ∈ PC1 ∧ p̃ ∈ (pr(PC1))0 2

Proof:
We show (i) - (iii) only for DAE (1):

(i) Without loss of generality, we assume that U = J ×Q, where J is an open interval and Q ⊆ X
is open.
Consider the ODE ẋ(t) = f̃(t, x(t)), where f̃ :J ×Q → Rn: (t, c) �→ f (t, c, h(t, c)) ∈ C0.
Obviously, there exists a solution ϕ: I → Q ∈ C1 with ϕ(t0) = x0 (I ⊆ J is an open
interval).Set ψ: I → Q×Y : t �→ (ϕ(t), h(t, ϕ(t))). Since I × prx(imψ) ⊆ J ×Q ⊆ U =⇒
∀t∈I g(t, ϕ(t), h(t, ϕ(t)) = g(t, ψ(t)) = 0.
Further, ψ ∈ C0, ϕ = prx ◦ ψ ∈ C1, and

D(prx ◦ ψ)(t) = ϕ̇(t) = f̃ (t, ϕ(t)) = f (t, ϕ(t), h(t, ϕ(t)) = f (t, ψ(t))

for all t ∈ I .
Further, ϕ(t0) = x0 and h(t0, x0) = y0 =⇒ ψ(t0) = (x0, y0) =⇒ ψ ∈ Sp =⇒ p ∈ P .
Let (t1, x1) ∈ U . Then (t1, x1, h(t1, x1)) meets the requirements of (i). Thus,
(t1, x1, h(t1, x1)) ∈ P =⇒ (t1, x1) ∈ pr(P ) =⇒ (t0, x0) ∈ (pr(P ))0

(ii) Equivalent to (i).

(iii) Applying the Implicit Function Theorem [2, 10.2.1] we get

∃W∈U((t0,x0)) ∃!h:W→Y ∈C1h(t0, x0) = y0 ∧ ∀w∈W (w, h(w)) ∈ V ∧ g(w, h(w)) = 0

By (ii) we get the assertion. 2

(5)((pr(P ))0 denotes the interior of pr(P ) in the space T ×X (resp. X).
(6)U(q) is the set of open neighbourhoods of q in the space considered (here: T ×X and X, respectively).
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2.5 Remark: Open questions are:

(i) Is it possible to prove ”⇐=”-parts of Lemma 2.4, at least under stronger assumptions ?

(ii) What are sufficient assumptions for uniqueness of solutions passing through (x0, y0) at t0
(resp. at 0) ?

(iii) What are sufficient assumptions to obtain p ∈ P 00
C1 (where (.)00 denotes the interior in the

space g−1(0)) instead of p̃ ∈ (pr(PC1))0 ? 2

In [1, Lemma 1 and 2] one can find statements similar to those of Lemma 2.4. Concerning (i) and
(ii), Lemma 2.4 is more general since h does not need to be unique:

2.6 Example:

ẋ = f (x, y)

0 = g(x, y) = y (y − x) x

y
g (0)-1

Let g(x0, y0) = 0 and let h:R → R:x �→
{

0,
x,

if
else

y0=0
}
. Obviously, using U = R as a neighbourhood

of x0, one gets h ∈ C1, h(x0) = y0, g(x, h(x)) =
{
g(x,0),
g(x,x),

if
else

y0=0
}
= 0, and by Lemma 2.4.ii,

(x0, y0) ∈ PC1, e.g. PC1 = g−1(0).
If (x0, y0) = (0, 0), Lemma 2.4 remains applicable although no unique h exists. 2

2.7 Lemma: Consider DAE (1) (resp. ADAE (2)) and assume g ∈ C1. Let p ∈ T ×X ×Y and let
prt,x:R×Rn×Rm → R×Rn be the orthogonal projection (resp. p ∈ X ×Y , prx:Rn×Rm → Rn

is the projection). Then

p ∈ g−1(0) ∧ (1, f (p)) �∈ prt,x(ker(Dg(p))) =⇒ p ∈ IC1,1

(resp. p ∈ g−1(0) ∧ f (p) �∈ prx (ker(Dg(p))) =⇒ p ∈ IC1,1

2

Proof: The proof is done for DAE (1) only:
Let p = (t0, x0, y0) and assume p �∈ IC1,1. Then, there exists a solution ϕ ∈ SC1,p of DAE (1). Let
be ψ: domϕ → T ×X ×Y : t �→ (t, ϕ(t)). Obviously, ψ(t0) = p, g ◦ ψ = 0, and D(g ◦ ψ) = 0. Thus,

0 = D(g ◦ ψ)(t0) = Dg(ψ(t0)) ◦Dψ(t0) = Dg(p) ◦D〈id |domϕ, ϕ〉(t0)
= Dg(p) ◦ 〈id |R, f (p), D(pry ◦ ψ)(t0)〉

=⇒ (1, f (p)) ∈ prt,x(ker(Dg(p)))
(7). Contradiction. 2

2.8 Remark: (i) If g−1(0) of ADAE (2) is a manifold and Dg(x0, y0) has full rank, Lemma 2.7
is equivalent to the argument that for any C1-solution ϕ passing through (x0, y0) at 0, ϕ̇(0)
has to lie in the tangent space of g−1(0) at (x0, y0).[4]
An analogous argument holds for DAE (1).

(ii) Under the assumptions of Lemma 2.7, p does not need to be in I1 (Example 2.9), nor in IC1,2

(Example 2.10).

(7)If dom f1 = · · · = dom fk, 〈f1, .., fk〉 is defined as 〈f1, .., fk〉: dom f1 → im f1 × ..× im fk: t �→ (f1(t), .., fk(t))
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(iii) Considering ADAE (2) and following [1], let S3 := {p ∈ g−1(0)|f (p) �∈ prx(ker(Dg(p)))} and
let I be the set of impasse points as defined in [1]. Now, Lemma 2.7 means S3 ⊆ IC1,1.
In [1, Lemma 3], Chua and Deng assert that I ⊆ S3. That can shown to be wrong even in
case g−1(0) is a smooth manifold. By Example 2.12 we obtain that even BIP’s and FIP’s do
not need to lie in S3.
If [1, Lemma 3] was right, there would not exist any DAE’s with index greater than 1 (for a
definition of index see [4]). 2

2.9 Example:

ẋ = f (x, y) = 1

0 = g(x, y) = y3 − x

g (0)-1

x

y

By Lemma 2.4.iii one obtains g−1(0) \ {(0, 0)} ⊆ PC1 , because Dyg(x, y) = (3y2) is bijective for all
points (x, y) of g−1(0) \ {(0, 0)}.
To tackle the point (0, 0), we apply Lemma 2.4.i with U = R and h(x) = |x|1/3 sign(x). Thus,
(0, 0) ∈ P .
Further, (0, 0) ∈ IC1,1, because (0, 0) meets the requirements of Lemma 2.7:

ker(Dg(0, 0)) = ker((−1, 0)) = {0}×R and f (0, 0) = 1 �∈ {0} = prx(ker(Dg(0, 0)))

After all we have:

PC1 = g−1(0) \ {(0, 0)}, P = g−1(0),
IC1,1 = {(0, 0)}, I1 = I2 = IB = IF = ∅

and by further investigations: IC1,2 = IC1,B = IC1,F = {(0, 0)}. 2

2.10 Example:

ẋ = f (x, y) = 1

0 = g(x, y) = x− g̃(y)

g(y)

y

~

-1

| |
1 2

with g̃ ∈ C∞, g̃|[1,2] = 1, and g̃|R\[1,2] < 1. (g̃ exists, e.g. constructed by regularisation.)

Consider p ∈ {1}× ]1, 2[(8)and apply Lemma 2.7:

ker(Dg(p)) = ker((1, 0)) = {0}×R and 1 �∈ {0} = prx(ker(Dg(p)))

=⇒ {1}× ]1, 2[ ∩ PC1 = ∅ =⇒ {1}× ]1, 2[ ∩ IC1,2 = ∅.
At this time, wo do not have an appropriate theorem to show that

{1}× ]1, 2[ ⊆ I1 and {1}× ]1, 2[ ∩ I2 = ∅

but that seems to be obvious here. 2

(8)]a, b[ denotes the open interval, [a, b] the closed etc.
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2.11 Example:

ẋ = f (x, y) = 1

0 = g(x, y) = x− g̃(y)

g(y)

y

~

with g̃(y) = exp(− 1
y2 ) sin(

2π
y ) and g̃ ∈ C∞ (see Lemma A.1, p. 11). (9)

1. (0, 0) ∈ PC1: Let (x, y) ∈ g−1(0) \ {(0, 0)}, then g̃′(y) = exp(− 1
y2 )(

2
y3 sin(

2π
y )− 2π

y2 cos(
2π
y )). Let

Z = g̃−1(0) \ {0} = { 2
k |k ∈ Z \ {0}}. Obviously, ∀y∈Z g̃′(y) �= 0, and by Lemma 2.4.iii we

obtain {0}×Z ⊆ PC1 and since limk→∞(0, 2k ) = (0, 0) we get (0, 0) ∈ PC1 .

2. (0, 0) /∈ IB ∪ IF ∪ IC1,B ∪ IC1,F : Assume ∃ϕ∈S(supdomϕ ∈ R ∧ limt→sup domϕ ϕ(t) = (0, 0)).
Without loss of generality, we can further assume that domϕ = ]−ε, ε[. Let ϕ = 〈ϕx, ϕy〉 ∈ C0

and ϕx ∈ C1. Considering ϕy we have limt→ε ϕy(t) = 0.
Case 1: ϕy = 0
=⇒ imϕx ⊆ g̃−1(0) = Z ∪ {0}. Since ϕ̇x = 1, imϕx contains an interval. Contradiction.
Case 2: ∃t0∈]−ε,ε[ ϕ(t0) �= 0. (Without loss of generality, let ϕy(t0) > 0.)

ϕy ∈ C0 ∧ limt→ε ϕy(t) = 0 =⇒ ]0, ϕy(t0)] ⊆ imϕy. Obviously, ∃k∈N+
2

k+1 ,
2
k ∈ ]0, ϕy(t0)[ ⊆

imϕy. Let t1, t2 ∈ domϕ, t1 < t2, with ϕy(t1) =
2

k+1 and ϕy(t2) =
2
k . =⇒

∃t∈]t1,t2[ ϕ̇x(t)(t2 − t1) = ϕx(t2)− ϕx(t1) = 0. Contradiction.

3. (0, 0) /∈ P : Assume ∃ϕ∈S(0,0)
and ]−ε, ε[ ⊆ domϕ. Set ψ: ]− ε

2 ,
ε
2 [→ R2: t �→ ϕ(t− ε

2 ) =⇒
limt→ ε

2
ψ(t) = limt→0 ϕ(t) = 0, which contradicts 2.

So, it follows: (0, 0) is an IP-2, a C1-IP-2 but is neither a BIP nor a C1-BIP nor a FIP nor a C1-FIP.
2

2.12 Example:

ẋ1 = f1(x1, x2, y) = 1

ẋ2 = f2(x1, x2, y) = x1 + y2

0 = g(x1, x2, y) = x2

x1

x2
y

P

where f = 〈f1, f2〉. Obviously, for all (x1,0, y0) ∈ R2 satisfying x1,0 < 0 and x1,0 + y20 = 0,

ϕ: ]x1,0,−x1,0[→ R2×R: t �→
(
x1,0 + t, 0,

√−x1,0 − t

{
1 if y0 > 0
−1 else

})

is in SC1 and hence, {(x1, 0, y) ∈ R2×R|x1 < 0 ∧ x1 + y2 = 0} ⊆ PC1.
Let 〈x1, x2, y〉 be a solution. Then x2 = 0 and, by that fact, 0 = ẋ2 = x1 + y2, and hence,
PC1 ⊆ {(x1, 0, y)|x1 + y2 = 0}.
Assume 〈x1, x2, y〉 ∈ S(0,0,0), then ∃ε>0]−ε, ε[ ⊆ imx1, because ẋ1(0) = 1. Contradiction.

Thus, P = PC1 = {(x1, 0, y)|x1 + y2 = 0 ∧ x1 < 0}.(10)
We have seen that (0, 0, 0) is a FIP and a C1-FIP. Now, as in [1] (see also Remark 2.8.iii), let us
consider Dg:

Dg = (0, 1, 0) =⇒ kerDg = R×{0}×R =⇒ prx kerDg = R×{0}
Since f (0, 0, 0) = (1, 0) ∈ prx kerDg(0, 0, 0) we have (0, 0, 0) /∈ S3. That contradicts [1, Lemma 3].
Note that Dg has full rank everywhere and P = PC1 is a smooth manifold. 2

(9)In this example we mean by a function, unless its domain is explicitly given, its continous extension to R.
(10)We could use here the procedure given in [4] to get PC1 , but want to get P as well.
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3 Limit Points

In this section we follow [1] as far as we try to follow the considerations which have lead to [1,
Theorem 1] and therefore, deal with autonomous DAE’s with Y = Rm only.

3.1 Definition: Let h:R×Rm → Rm ∈ C0, (λ0, y0) ∈ h−1(0).
(λ0, y0) is called right limit point of h−1(0) :⇐⇒

∃N∈U((λ0 ,y0))N ∩ h−1(0) ∩ ((λ0 +R+)×Rm) = ∅(11)

(λ0, y0) is called left limit point of h−1(0) :⇐⇒

∃N∈U((λ0 ,y0))N ∩ h−1(0) ∩ ((λ0 −R+)×Rm) = ∅

2

The definition of a limit point given is equivalent to that given in [1] (see Lemma A.2).

3.2 Definition: Consider ADAE (2) with Y = Rm and let (x0, y0) ∈ g−1(0). Then

h:R×Rm → Rm: (λ, y) �→ g(x0 + λf (x0, y0), y)

is called cut mapping of ADAE (2) at (x0, y0). 2

The purpose of [1, section 2.2] is to decide wether a point (x0, y0) ∈ Rn×Rm of ADAE (2) is an
impasse point or not by solving a static bifurcation problem. Namely, [1, Theorem 1] asserts that

(T1) Let (x0, y0) ∈ Rn×Rm, let h be the cut mapping of ADAE (2) at (x0, y0), and let Y = Rm.
Then

(x0, y0) is a FIP (resp. BIP) of ADAE (2) ⇐⇒ (x0, y0) ∈ g−1(0) ∧ (0, y0) is a right (resp.
left) limit point of h−1(0)

The proof of (T1) in [1] is wrong, and so do both parts (” =⇒ ” and ”⇐= ”) of (T1) itself. The
falsity of the proof is, from our point of view, mainly due to the fact that there are two conjectures
(C1,C2) used within it, both of which can be shown to be wrong (Examples 3.3, 3.5, and 3.6).
One idea of the proof mentioned is:

(C1) Consider ADAE (2) with Y = Rm, n = 1, f = 1, and (0, y0) ∈ g−1(0). Then

(0, y0) is a FIP (resp. BIP) of ADAE (2) ⇐⇒ (0, y0) is a right (resp. left) limit point of
g−1(0).

3.3 Example:

ẋ = f (x, y) = 1

0 = g(x, y) = x− g̃(y)

g(y)

y

~

where g̃(y) = exp(− 1
y2 )

{
sin( 2πy ) y > 0
−1 else

}
with g̃ ∈ C∞ (see Lemma A.1, p. 11). Then

∀x0∈]−1,0[ϕ: ]x0,−x0[→ R2: t �→
(
x0 + t,−

√
−1

ln(−(x0 + t))

)
∈ SC1 ∧ lim

t→−x0
ϕ(t) = (0, 0)

As in Example 2.11, it is easy to show that (0, 0) /∈ P =⇒ (0, 0) is a FIP and a C1-FIP. But (0, 0)
is neither a left nor a right limit point of g−1(0). Here, g is itself the cut mapping at (0, 0) and
thus, this example contradicts (C1) as well as the ” =⇒ ”-part of (T1), i.e. [1, Theorem 1]. 2

(11)0 /∈ R+ ∪R−
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3.4 Definition: Consider ADAE (2) with Y = Rm and let (x0, y0) ∈ g−1(0). Then the system

λ̇

0

=

=

1 ∈ R
h(λ, y)

(5)

with domh = R×Rm and h(λ, y) = g(x0+λf (x0, y0), y) is called first order ADAE corresponding to
ADAE (2) at (x0, y0). 2

Using the definition given above, we can formulate another idea of the proof in question as follows:

(C2) Consider ADAE (2), let (x0, y0) ∈ g−1(0) and let ADAE (5) be the first order ADAE corre-
sponding to (2) at (x0, y0). Then

(x0, y0) is a FIP (resp. BIP) of (2) ⇐⇒ (0, y0) is a FIP (resp. BIP) of (5)

3.5 Example:

ẋ1 = 1

ẋ2 = 2x1 (6)

0 = x2 − (x1 + y2)2 = g(x1, x2, y) x

y

1

(0,0,0)

Consider the point (0, 0, 0). Obviously, ϕ: ]−1, 1[ → R3: t �→ (t, t2, 0) ∈ SC1,(0,0,0) =⇒ (0, 0, 0) ∈
PC1.
Consider the corresponding first order ADAE at (0, 0, 0):

λ̇

0

=

=

1

− (λ+ y2)2 = h(λ, y)
(7)

h (0)-1 y

Obviously, (0, 0) is an FIP and a C1-FIP of (7) and a right limit point of h−1(0):

h(λ, y) = g(0 + λ · 1, 0 + λ · 2 · 0, y) = −(λ+ y2)2

But (0, 0) is not even an IP-1 of (6). That contradicts (C2) as well as the ”⇐= ”-part of (T1), i.e.
[1, Theorem 1]. 2

3.6 Example:

ẋ1 = 1

ẋ2 = f2(x1) (8)

0 = x2 − (x1 + y)2 = g(x1, x2, y)
x

y

1
(0,0,0)

x2

where f2 ∈ C∞, f2|R−∪{0} = 0, and f2|R+ < 0. (f2 exists, e.g. constructed by regularisation.)
Assume 〈x1, x2, y〉 = ψ ∈ S(0,0,0), without loss of generality let domψ = ]−ε, ε[ for some ε > 0.
Then ∀t∈domψ x1(t) = t ∧ x2(t) ≥ 0.
Considering x2(

ε
2) ≥ 0 we obtain: ∃t∈]0, ε

2
[ ẋ2(t) =

2
ε (x2(

ε
2)−x2(0)) =

2
εx2(

ε
2) ≥ 0 which contradicts

f2|R+ < 0. =⇒ (0, 0, 0) /∈ P
Consider ϕ: ]−1, 1[ → R3: t �→ (t − 1, 0,−t + 1). Obviously, ϕ ∈ SC1 and limt→1 ϕ(t) = (0, 0, 0).
Thus, (0, 0, 0) is a FIP as well as a C1-FIP of (8).
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Consider the corresponding first order ADAE at (0, 0, 0):

λ̇

0

=

=

1

− (λ+ y)2 = h(λ, y)
(9)

h (0)-1

y

It is easy to see that (0, 0, 0) is neither a FIP nor a C1-FIP of (9) nor a right limit point of h−1(0):

h(λ, y) = g(0 + λ · 1, 0 + λf2(0), y) = −(λ+ y)2

Thus, this example contradicts (C2) as well as the ” =⇒ ”-part of (T1), i.e. [1, Theorem 1]. 2

Note that Examples 3.3, 3.5, and 3.6 do not only meet the requirements of [1, Theorem 1], but also
satisfy the additional assumptions of the algorithm given in [1, Part II], namely, f, g, h ∈ C∞.

A Appendix

A.1 Lemma: Let k ∈ N+, ε ∈ R+, and g:R \ [− 1
εk
, 1
εk
]→ R bounded.

Let further f : ]−ε, ε[→ R:x �→
{
0 if x = 0
exp(− 1

x2 )g(
1
xk
) else

}
. Then

(i) f is differentiable at 0 and f ′(0) = 0.

(ii) Let r ∈ N ∪ {∞}, g ∈ Cr, and ∀i∈N+,i≤r g
(i) be bounded. Then

f ∈ Cr ∧ ∀i∈N+,i≤r f
(i)(0) = 0. 2

Proof:

(i) lim
x→0

f (x) = 0 is obvious. Let n ∈ N. Then

lim
x→0

x−n exp(− 1

x2
) = lim

|x|→∞
xn exp

(
−x2

)
= 0 (10)

and

lim
δ→0

∣∣∣∣
f (δ)− f (0)

δ

∣∣∣∣ = lim
δ→0

∣∣∣∣
f (δ)

δ

∣∣∣∣ ≤ M lim
δ→0

∣∣∣∣δ
−1 exp(− 1

δ2
)

∣∣∣∣ = 0

(ii.a) Let P the set of polynomials with real coefficients and set f̃ = f |]−ε,ε[\{0}. Then, for all

i ∈ {0, · · · , r}, f̃ (i) can be written as follows:

f̃ (i)(x) = exp(− 1

x2
)

i∑

j=0

g(j)(
1

xk
)
pj(x)

qj(x)
(11)

where ∀j∈{0,···,i} pj , qj ∈ P .
Proof of (11):
(11) holds for f̃ (0) = f̃ . Let i ∈ N+, i < r and assume that (11) holds for f̃ (i). Then

f̃ (i+1)(x) = 2x−3 exp(− 1

x2
)

i∑

j=0

g(j)(
1

xk
)
pj(x)

qj(x)

+ exp(− 1

x2
)

i∑

j=0

(
g(j+1)(

1

xk
)(−k)x−(k+1)pj(x)

qj(x)
+ g(j)(

1

xk
)
p′j(x)qj(x)− pj(x)q

′
j(x)

(qj(x))2

)

which can obviously be brought into form (11). Thus, (11) holds for f̃ (i+1).
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(ii.b) We show ∀i∈N,i≤r lim
x→0

f (i)(x) = 0:

lim
x→0

∣∣∣f (i)(x)
∣∣∣ = lim

x→0

∣∣∣f̃ (i)(x)
∣∣∣ ≤ lim

x→0

i∑

j=0

Mj

∣∣∣∣∣
exp(− 1

x2 )

qj(x)

∣∣∣∣∣ (since pj ∈ C0)

=
i∑

j=0

Mj lim
x→0

∣∣∣∣∣
exp(− 1

x2 )

qj(x)

∣∣∣∣∣

For all j ∈ {0, · · · , i} there exist nj ∈ N and q̃j ∈ P with q̃j(0) �= 0 and qj(x) = xnj q̃j(x) for
all x ∈ dom f̃ . =⇒

lim
x→0

∣∣∣f (i)(x)
∣∣∣ ≤

i∑

j=0

Mj lim
x→0

∣∣∣∣∣x
−nj exp(− 1

x2
)

1

q̃j(x)

∣∣∣∣∣

≤
i∑

j=0

MjLj lim
x→0

∣∣∣∣x
−nj exp(− 1

x2
)

∣∣∣∣ (since q̃j ∈ C0 and q̃j(0) �= 0)

= 0 (see (10))

(ii.c) We show ∀i∈N,i≤r f (i)(0) = 0:

The assertion holds for i = 0. Let i ∈ N+, i < r and assume f (i)(0) = 0. Obviously, f̃
(i)(x)
x is

of form (11). It follows as in (ii.b):

lim
δ→0

f (i)(δ)− f (i)(0)

δ
= lim

δ→0

f (i)(δ)

δ
= lim

δ→0

f̃ (i)(δ)

δ
= 0

=⇒ f (i+1)(0) exists and f (i+1)(0) = 0. 2

A.2 Lemma: Let h:R×Rm → Rm ∈ C0, (λ0, y0) ∈ h−1(0), and for any δ ∈ R:

Ψ+
δ = {(λ, y) ∈ R×Rm|h(λ, y) = 0 ∧ λ0 < λ < δ}

and Ψ−
δ = {(λ, y) ∈ R×Rm|h(λ, y) = 0 ∧ δ < λ < λ0}

Then
(λ0, y0) is a right (resp. left) limit point of h−1(0) ⇐⇒

∀λ+>λ0 ∃N0∈U((λ0 ,y0)) ∀N∈U(p),N⊆N0
N ∩Ψ+

λ+
= ∅ (12)

(resp. ∀λ−<λ0 ∃N0∈U((λ0 ,y0)) ∀N∈U(p),N⊆N0
N ∩Ψ−

λ− = ∅)

2

Proof: We show the assertion for right limit points only. Ψ+
λ+

= h−1(0) ∩ (]λ0, λ+[×Rm)

”⇐= ”: Choose N ⊆ B(λ0, ε)×Rm ∩N0, N ∈ U((λ0, y0)) with ε sufficient small.(12) =⇒
(]λ0, λ+[×Rm) ∩N = ((λ0 + R+)×Rm) ∩N
” =⇒ ”:

(i) (λ0, y0) is a right limit point of h
−1(0) =⇒

∀λ+>λ0 ∃N0∈U((λ0 ,y0))N0 ∩Ψ+
λ+

= ∅ (13)

since ]λ0, λ+[×Rm ⊆ (λ0 +R+)×Rm.

(ii) (13) =⇒ (12) since N ⊆ N0 =⇒ N ∩Ψ+
λ+

⊆ N0 ∩Ψ+
λ+

= ∅ 2

(12)B(m, r) denotes the open ball with center m and radius r.

12



References

[1] Chua, L.O./Deng, A.-C. ”Impasse Points. Part I:Numerical Aspects”, ”Impasse Points. Part
II: Analytical Aspects”, Int. J. Circ. Theor. Appl., Vol. 17, 213-235 (1989), 271-282 (1989)
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