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Abstract

In this paper the behaviour of discrete-time linear sys-

tems is investigated. A complete characterization of

all discrete-time linear systems of convolution type is

given in the paper. The result is a generalization of

results given by S. Boyd and I. Sandberg.

1 Introduction

In this paper the behaviour of discrete-time linear

systems is investigated. l

1

is the space of bounded

discrete-time functions, endowed with the norm

kxk = sup

k2ZZ

jx(k)j. Let denote l

1

0

the space of

all bounded discrete-time functions x 2 l

1

that

satisfy lim

jkj!1

x(k) = 0.

All investigated systems are BIBO- stable

(bounded input-bounded output). This means

that a positive number C

1

exists, so that

kSxk � C

1

(1)

holds for all x 2 l

1

, kxk � 1. The main idea of the

theory of discrete-time single-input single-output

linear systems S is that every such system has an

input-output map that can be represented by an

expression of the form

y(k) = (Sx)(k) =

1

X

l=�1

h(k; l)x(l) ; (2)

where x is the input, h the inpulse response, and

y the output of the system S.

Systems S of this type are called systems of sum

type.

If the system S is time-invariant, then equation

(2) reduces to

y(k) = (Sx)(k) =

1

X

l=�1

h(k � l)x(l) : (3)

Systems of this kind are called systems of con-

volution type. They are especially important for

signal processing [3].

The function h in (3) is the impulse response of

the system S, i.e., h(l) = (S�)(l), where � denotes

the Kroneker-Delta-function

�(k) =

(

1 k = 0

0 k 6= 0 :

Often it is asserted that the representations (2)

and (3) hold for all linear discrete-time systems

[3]. It was recently discovered that not all discrete-

time single-input single-output linear systems are

of sum type or convolution type [2], [4], [5]. Some

examples were constructed in [2], [4].

A complete characterization of BIBO-stable

discrete-time systems was given in [1]. Let E

n

x

denote the signal given by

(E

n

x)(k) =

(

x(k) jkj > n

0 jkj � n :
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The following was shown in [1].

Theorem 1 Let S be a BIBO-stable linear sys-

tem. Then the representation

(Sx)(k) = (S

1

x)(k) + (S

1

x)(k) (4)

holds for all signals x 2 l

1

, where the system S

1

has the form

(S

1

x)(k) =

1

X

l=�1

h(k; l)x(l) ; (5)

and the system S

1

is de�ned by

(S

1

x)(k) = lim

n!1

( (SE

n

x)(k) ) : (6)

Both systems S

1

and S

1

are linear and BIBO-

stable. If the system S is a LTI-system then the

systems S

1

and S

1

are also LTI-systems.

The limit in (6) exists for all functions x 2 l

1

.

Representation (4) means that each BIBO-stable

linear system can be split into two subsystems S

1

and S

1

which are given by (5) and (6). System

S

1

is the only system of sum type, that means the

system S is of sum type i� S

1

= 0. The impulse

response of the system S

1

is zero for all k 2 ZZ .

For all signals x 2 l

1

0

we have

(Sx)(k) = (S

1

x)(k)

for all k 2 ZZ. The BIBO-Norm kSk

B

of linear

system S is the in�mum of all numbers C

1

, so

that (1) holds. The representation

kSk

B

= kS

1

k

B

+ kS

1

k

B

(7)

for the BIBO-norm kSk

B

of an LTI-system S was

shown in [1].

2 Main result

Since not all discrete-time single-input single-

output linear systems S are of sum type or convo-

lution type it would be interesting to characterize

these systems.

This means to �nd all discrete-time linear systems

S, so that the identity S = S

1

, or equivalently,

S

1

= 0 holds. That means S

1

x = 0 for all sig-

nals x 2 l

1

.

For this reason it is necessary to introduce one

more concept. A sequence of bounded input-

signals x

n

, n 2 IN , is said to be converge to a

bounded signal x, if a positive number C

2

exists,

so that

jx

n

(k)j � C

2

(8)

for all n 2 IN and k 2 ZZ and

lim

n!1

x

n

(k) = x(k) (9)

for all k 2 ZZ holds. A linear discrete-time BIBO-

stable system S is said to be strongly continu-

ous, if for each convergent sequence the equation

lim

n!1

(Sx

n

)(k) = (Sx)(k) ; k 2 ZZ ; (10)

holds. This means the sequence of output-signals

y

n

= Sx

n

converges to the output-signal y = Sx.

Some clari�cations are necessary. There is an-

other important convergence concept. A sequence

of bounded input-signals x

n

, n 2 IN , converges

in norm to a bounded signal x, if

lim

n!1

kx� x

n

k = 0 (11)

holds. Every norm-convergent sequence of

bounded signals is convergent but not vice-versa.

This means the concept convergence is weaker

than the concept norm-convergence. There is also

a second de�nition of continuous linear systems.

A linear system S is said to be continuous, if for

each sequence x

n

, n 2 IN , with (11) the equation

lim

n!1

kSx� Sx

n

k = 0 (12)

holds. Each BIBO-stable linear system S is con-

tinuous. However, the concept strongly continu-

ous is stronger than the concept continuous.

The following is our main result.
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Theorem 2 A linear BIBO-stable discrete-time

system S is a system of sum type, if and only if

the system S is strongly continuous.

A BIBO-stable LTI-system S is a system of convo-

lution type, if and only if the system S is strongly

continuous.

3 Proof of the main Result

In this section we give a proof of our main result.

Proof: (Theorem 2) Suppose that the BIBO-stable

LTI-system S is strongly continuous. For each n 2

IN we construct a signal x

n

by

x

n

(k) =

(

x(k) jkj � n

0 jkj > n :

(13)

For these signals x

n

we have kx

n

k � kxk and

x(k) = lim

n!1

x

n

(k) (14)

for all k 2 ZZ . That means the sequence of signals

x

n

converges to the signal x. Since the system S

is strongly continuous we have for all k 2 ZZ

(Sx)(k) = (Sx

n

)(k) : (15)

For the signals x

n

the representation

x

n

(k) =

n

X

l=�n

x(l)�(k� l) (16)

holds. This gives

(Sx

n

)(k) =

n

X

l=�n

x(l)h(k� l) (17)

and

(Sx)(k) = lim

n!1

n

X

l=�n

x(l)h(k� l)

=

1

X

l=�1

x(l)h(k� l)

= (S

1

x)(k) : (18)

Since x 2 l

1

was an abitriary signal, we have S =

S

1

, and the system S is a system of convolution

type.

Let now S be a system of convolution type and x

n

be a convergent sequence of signals. We have to

show, that the system S is strongly continuous.

Let " > 0 be an abitriary number. Since the sys-

tem S is BIBO-stable there exists a number M

such that

X

jlj�M

jh(l)j < " : (19)

Since the sequence of signals x

n

is a convergence

sequence there exists a positive number C

3

such

that

jx

n

(k)j � C

3

(20)

holds. With the signal x

n

we have

j(Sx)(k)� (Sx

n

)(k)j =

=

�

�

�

�

�

�

1

X

l=�1

h(l)(x(k � l)� x

n

(k � l))

�

�

�

�

�

�

�

1

X

l=�1

jh(l)j � jx(k � l)� x

n

(k� l)j

=

M

X

l=�M

jh(l)j � jx(k � l)� x

n

(k � l)j+

+

X

jlj>M

jh(l)j � jx(k � l)� x

n

(k � l)j :

(21)

At next we investigate the second term on the

right side of (21). We have

X

jlj>M

jh(l)j � jx(k � l)� x

n

(k� l)j �

�

X

jlj>M

jh(l)j � (jx(k � l)j+ jx

n

(k� l)j )

� 2C

3

�

X

jlj>M

jh(l)j < 2C

3

� " : (22)

For the �rst term on the right side of (21) we have

M

X

l=�M

jh(l)j � jx(k � l)� x

n

(k � l)j �

3



� max

jlj�M

jx(k� l)� x

n

(k � l)j �

M

X

l=�M

jh(l)j

� max

jlj�M

jx(k� l)� x

n

(k � l)j �

1

X

l=�1

jh(l)j

= C

4

� max

jlj�M

jx(k � l)� x

n

(k � l)j : (23)

For each number l, jlj �M , there exists a number

n

0

= n

0

("; l) such that for all numbers n � n

0

the

inequality

jx(k � l)� x

n

(k � l)j < " (24)

holds. Now de�ne the number n

�

=

max

jlj�M

n

0

("; l). For all numbers n � n

�

we have

max

jlj�M

jx(k � l)� x

n

(k� l)j < " : (25)

This yields for all numbers n � n

�

j(Sx)(k)� (Sx

n

)(k)j � " �

�

2C

3

+ C

4

�

: (26)

Since the inequality (26) holds for all " > 0 we

have

(Sx)(k) = lim

n!1

(Sx

n

)(k) : (27)

So the system S is strongly continuous.

This proofs Theorem 2 for BIBO-stable LTI-

systems. The proof of the general result is similar.

4 BIBO-norm

In this section a characterization with respect to

the BIBO-norm of BIBO-stable LTI-systems of

convolution type is given. Most of the results are

only valid for LTI-systems. For abitriary BIBO-

stable linear systems the behaviour of the BIBO-

norm of these systems is more di�ucult. Let l

1

c

denote the set of all signals x with are only non

zero for �nite time intervals. The next theorem

gives a characterization of the behaviour of the

BIBO-norm kS

1

k

B

. The system S is an abitriary

BIBO-stable linear system.

Theorem 3 The BIBO-stable LTI-system S is a

system of convolution type if and only if the rep-

resentation

kSk

B

= sup

kxk�1;x2l

1

c

kSxk (28)

holds.

Proof: Let S be a system of convolution type. So

we have S = S

1

. Consider for each K 2 IN the

signal

x

K

(l) =

(

sign(h(�l)) jlj � K

0 jlj > K :

(29)

We have x

K

2 l

1

c

. With this signal we have

K

X

l=�K

x(l)h(�l) =

K

X

l=�K

jh(l)j= (Sx

K

)(0)

� kSx

K

k � kSk

B

� kx

K

k

= kSk

B

�

1

X

l=�1

jh(l)j : (30)

This gives for all K 2 ZZ

K

X

l=�K

jh(l)j � sup

kxk�1;x2l

1

c

kSxk

� kSk

B

�

1

X

l=�1

jh(l)j : (31)

Since the inequality (31) holds for all K we have

(28). Now suppose that the equation (28) holds.

We have to show that the system S is a system

of convolution type. We have already shown that

the equation

kS

1

k

B

= sup

kxk�1;x2l

1

c

kS

1

xk (32)

holds. Let x 2 l

1

c

be an abitriary signal. There

exists a number N 2 IN such that

x(k) = 0
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for all jkj > N . So we have

(Sx)(k) =

N

X

k=�N

x(l)h(k� l) = (S

1

x)(k) : (33)

With (28) this gives

kSk

B

= kS

1

k

B

(34)

and so

kS

1

k

B

= 0 (35)

holds.

With the help of Theorem 3 we have the result,

that a BIBO-stable LTI-system S is a system of

convolution type if and only if the BIBO-norm of

the system S can be calculated by

kSk

B

= sup

kxk�1;x2l

1

0

kSxk : (36)

In the next theorem we consider abitriary BIBO-

stable linear systems.

Theorem 4 For the BIBO-norm kSk

B

of a

BIBO-stable linear system S the representation

(7) holds if and only if for each " > 0 there ex-

ist a signal x

"

2 l

1

with kx

"

k = 1 and a number

k

"

2 ZZ such that

(S

1

x

"

)(k

"

) > kS

1

k

B

� " (37)

and

(S

1

x

"

)(k

"

) > kS

1

k

B

� " (38)

holds.

Proof: Suppose that (37) and (38) holds. Then we

have

(Sx

"

)(k

"

) = (S

1

x

"

)(k

"

) + (S

1

x

"

)(k

"

) >

> kS

1

k

B

+ kS

1

k

B

� 2" : (39)

This gives

kSk

B

> kS

1

k

B

+ kS

1

k

B

� 2" : (40)

Since the inequality (40) holds for all " > 0 we

have kSk

B

� kS

1

k

B

+ kS

1

k

B

. The inverse in-

equality kSk

B

� kS

1

k

B

+ kS

1

k

B

is also satis�ed

which gives (7).

Now suppose that (7) holds. There exist a signal

x

"

2 l

1

with kx

"

k = 1 and a number k

"

2 ZZ such

that

(Sx

"

)(k

"

) > kSk

B

�

"

2

(41)

holds. We also have

(S

1

x

"

)(k

"

) + (S

1

x

"

)(k

"

) � (S

1

x

"

)(k

"

) + kS

1

k

B

:

(42)

This gives

(S

1

x

"

)(k

"

) � kSk

B

�

"

2

� kS

1

k

B

= kS

1

k

B

�

"

2

:

(43)

By the same way we can show that

(S

1

x

"

)(k

"

) � kS

1

k

B

�

"

2

(44)

holds. This proofs Theorem 4.

Theorem 5 Let Q

n

be the set of all signals x 2

l

1

such that x(k) = 0 for all jkj � n. We have

for all n 2 IN

kS

1

k

B

= sup

kxk�1;x2Q

n

kS

1

xk : (45)

Proof: Since Q

n

� l

1

holds, we have

sup

kxk�1;x2Q

n

kS

1

xk � kS

1

k

B

: (46)

Let n be an abitriary number. We consider the

signal x

"

such that (38) holds. We have

(S

1

x

"

)(k

"

) = lim

m!1

(SE

m

x

"

)(k

"

) : (47)

Let m

0

� n be abitriary and x

";m

0

= E

m

0

x

"

.

Then we have x

";m

0

2 Q

n

and

(S

1

x

"

)(k

"

) = (S

1

x

";m

0

)(k

"

) : (48)

This gives

sup

kxk�1;x2Q

n

kS

1

xk � kS

1

x

";m

0

k �

� (S

1

x

";m

0

)(k

"

) � kS

1

k

B

� " : (49)
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Since the inequality (49) holds for all " > 0 we

have

sup

kxk�1;x2Q

n

kS

1

xk � kS

1

k

B

(50)

which proofs Theroem 5.

With the help of the next theorem it is possible to

calculate the BIBO-norm kS

1

k

B

.

Theorem 6 Let S be a BIBO-stable LTI-system

and let

kSk

B;n

= sup

kxk�1;x2Q

n

kSxk : (51)

Then we have

kS

1

k

B

= lim

n!1

kSk

B;n

: (52)

Proof: For all n 2 IN we have Q

n+1

� Q

n

. This

gives

kSk

B;n

� kSk

B;n+1

: (53)

With (53) the limit

kSk

B;�

= lim

n!1

kSk

B;n

(54)

exists. We have to show that kSk

B;�

= kS

1

k

B

holds. We have for all signals x 2 Q

n

with kxk � 1

kS

1

xk � kSxk � kS

1

xk

� kSxk �

X

jlj>n

jh(l)j : (55)

This gives

kS

1

k

B

� kSxk �

X

jlj>n

jh(l)j : (56)

The left side of the inequality (56) is independent

with respect to the signal x. This gives

kS

1

k

B

� kSk

B;n

�

X

jlj>n

jh(l)j (57)

and so

kS

1

k

B

� lim

n!1

0

@

kSk

B;n

�

X

jlj>n

jh(l)j

1

A

= kSk

B;�

:

We also have for all x 2 Q

n

with kxk � 1

kS

1

xk � kSxk+ kS

1

xk

� kSxk+

X

jlj>n

jh(l)j : (58)

This gives

kS

1

k

B

� lim

n!1

0

@

kSk

B;n

+

X

jlj>n

jh(l)j

1

A

= kSk

B;�

(59)

which proofs the Theorem 6.

The follwing theorem is a consequence of the The-

orem 6.

Theorem 7 A BIBO-stable LTI-system is a sys-

tem of convolution type if and only if the equation

lim

n!1

kSk

B;n

= 0 (60)

holds.
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