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Abstract

The behavior of multitone signals with Schroeder’s
phase is investigated in this paper. Relations to the
noise enhancement factor are analyzed. The results
solve a problem proposed by Professor J. Massey.
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1 Introduction

Multitone signal F' is defined by

N
F(ei) = <o -3 (ke

k=0

1)

with |f(k)] = 1 for 0 < k < N [2], [5], [6]. This
means that there exists a real valued function ¢ such
that f(k) = e/#(¥) holds. The class of all multitone
signals of the form (1) is denoted by By . The crest
factor of a continuous signal G is defined by

Gl
Cr(G) = 55— 2
9= e, @
where {|Gl|co is the peak value of the signal G, i.e.,

NGlleo =

Jjw
wErfl—%r),(n) |G(€ )|

and

[

1 [
— Jwy)2
6l = { 5 [ 16()P

is the energy of the signal G. For the energy of a
multitone signal F' we have with Parseval’s equation

1 N 3
IF|l2 = (N—_F—I-Z|f(k)|2) =1.
k=0

This gives for the crest factor of a multitone signal
F the equation Cr(F) = ||Flleo -

It is very difficult to find multitone signals with low
crest factors (2], [5]. Of course we have Cr(F) > 1
for all multitone signals.
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2 Schroeder’s Phase

In [3] [4] one is interested in length-N aperiodic
bipolar sequences s where s(I) € {£1} for 0 <1<
N-1 and s(I) = 0 otherwise. The aperiodic impulse
response of the inverse filter h, is defined by

N-1

> s(l) - hy(k—1) = 6(k) .

1=0

®)

The Kronecker-Delta function is given by §(k) =1
for k = 0 and §(k) = 0 for k # 0. The Z-transform
of the function s is defined by

N-1

S(efv)y =) s(l) -e7i

=0

4)

We suppose that |S(e/“)] > 0 holds for all w €
[-m, 7). The frequency response H, of the inverse
filter is also a continuous function. We have

oo e 1
Z h,(l)e ! ——S—(;’w—)

l=—00

H, (%) = (5)

Since H, is a continuous function it has also a finite
energy, i.e., the noise enhancement factor k, given

by [3], 4]

Ks

1 r .
— Jwy|2
N 27r/|H,(e )|? duw
-

1 r 1
= V[t O

is finite. In [3] [4] one is interested in bipolar se-
quences, which have noise enhancement factors as
small as possible. The noise enhancement factor
satisfies k, > 1. It follows that x, = 1 if and
only if the sequence s has a perfect flat spectrum
|S(e?“)|2 = N. For N > 2 it is easy to show that
Ks is greater then 1. Thus a first practical crite-
rion of goodness of the bipolar sequence of s is the
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smallness of [4]
1 [ - 2
— Jwyj2 _
A, = ———%/(IS(e =1)do. (0

The investigation of the behavior of the quanteties
Ap is a very difficult task [3]. The exact asymp-
totic behavior of the numbers A; and k, are un-
known [3]. It is the aim of this paper to investigate
the behavior of the numbers (7) for multitone sig-
nals with Schroeder’s phase. Let N € IN be an
arbitrary number. We consider the phase function
¢SCH deﬁnéd by

BT 0<k<N
éscu(k) = (8)
0 kg[o,N].

This function was first introduced by M.R.
Schroeder [6]. See also [5]. The behavior of the

related multitone signal

Pn(e?¥) =

N
\/]Vl—-*-l . Zexp (J¢SCH(k)) : e—jkw
k=0
)

is now analyced. We consider the number

inf

AN =
N PeByN

é—l;/w(lP(ej“’)P—l)zdw. (10)

The exact asymptotic behaviour of the number is
unknown

It is shown in the next section that

T

1 , 2
; Jjwy|2 _ —
lim 5 / (|PN(e ) 1) dw=0.

-

(11)

holds. This gives limy00 Ay = 0. So if we con-
sider multitone signals with arbitrary phase func-
tions the exact asymptotic behavior of the numbers
An,N € IN, is now known. The function Py is
shown in Figure 1.

[Pn(e™)l
1.4

1.2

1
0.8
9.6
0.4

0.2

B P2 @
Figure 1: Function |Py| for N = 16
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Figure 2: Inverse function p-t for N = 16

3 Proof of (11)

We have

= j (1Px ()2 1) do =

= %/|PN(ej“)|4dw—l.

-

(12)
For the proof of (11) it is enough to show that
1 "
Jim o= [iPvEta =1 a3

holds. For the proof of (13) we investigate the func-
tion Py n(e/*) = Py (ej(“’+7‘7i_l)~).

Of course the function P, y is also a multitone
function. The phase function ¢n has the form
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éxN(k) = 7’;‘}% We have

n 3
1 . 1 e
or [ 1Pwe)tdo = 5= [ 1Pan () d
r -7

In the next step it is shown that there exists a po-
sitive constant C7 such that

e
1 . Cr
— [ 1Pon(e)Pdw < 14+ —— 14
7 [ PPl 14 ot 19
holds. For this we investigate the number
w
=5 [IPwE)tdo . (19)
2w '
-

We use the function

Hyn(e®) = P N(e"‘“) - P.,n(e)

Z hn(l) exp(—ilw) . (16)
1=

We have with Parseval’s equation
1 [ al
—_ fw)|2 - 2
w=gp [HnEIPa= 3 IOF - 0
-1 -

Now the coefficients hy are calculated. We have
with (16)

This gives for all time instants 0 < k < N
1— exp ( 2k(N—k+1)n ) I
2kw

N+1
1 —exp ("‘N—') i

For —N < k < —1 similar investigations give

1

I ()] = 5

(22)

1
N+1

N+1
%)
(23)

We use the equations (22) and (23) for the calcula-
tion of the number In. If £ = 0 we have

1-exp(

|hn (F)| =
N 1—exp(

N ——
=Y penOPn@)=1.

1=0

(24)

This gives

S hn()P

k=-N

N
Iv=1+)Y_ |hn(k) +
k=1

(25)

Now we calculate the sums on the right side of (25).
The first sum is denoted by S} . Let ky be the
largest number such that
K, 1
N+1~ (N+1)t
holds. Let Ky be the smallest number such that

(26)

N N (N+1) - (N+1)E< Ky (27)
Hn(e®) = Y pon(l)e™™“ - > pon(lz)e™*“holds. We have with these numbers
1,=0 i3=0 kZN Kn—-1 N
r= S =) lhn(k)*+ th (k) 1>+ lhn (k)12 .
= Z Z PN (Dpe v (1 + K)e™* k=1 k=§+1 k§~
l:;)vk_—l (28)

In the next step the sums on the right side of (28)

= Z e thw Zpa N(Ope N+ k)g(k, Dhre investigated. We have for 1 <k < kn

k=-N =0

(18# 1= exp (

The function ¢ is defined by

1 -I<k<N-l
aen={p 55 W
This gives for the time instants 0 <k < N
N—k
hn(k) =Y ponOpen(T+E) . (20)
=0
For —N < k < —1 we have
N e —
hv(k)= Y pen(Open@+E) . (21)
I=|k}
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2k(N — k + )m
N+1

<G —7 .
(N+1)s

(29)
C, is a certain constant [1]. This gives for the first
sum

kN kn
4(C,)? 1

S P < ;
k=1 (N+1)¢ = (sin ( 1\5‘_’;1 ))

< S (30)

(N+1)% :
Here we use for 1 < N_ < % the inequality
. km k
MY TIZNFL (31)



Now the second sum on the right side of (28) is [2] Boyd, S.; Multitone Signals with Low Crest

investigated. Let ry be the largest number such Factor, IEEE CAS, vol. 33 no 10, October
that 1986.

NT I (32) '

N+1- [3] Massey, J.; Private Communication, ETH-

holds. We have with the number ry Zurich, October, 1997.

Kn-1 ~ Kn-1 [4] Ruprecht, J., Rupf, M.; On the Search and

Z IhN(k)|2_= Z |hn (k)2 + Z lhn (k)2 . Construction of Good Invertible Binary Se—
quences, ISIT’ 94, Int. Symp. on Information

k=kn+1 : k=kn+1 k=ry+1
(33) Theory, Trondheim, 1994.
;I“l};;i;st) sum on the right side of (33) can be cal- [5] Schoukens, J., Pintelon, R.; Identification of
Y , Linear Systems, A Practical Guideline to Ac-
TN 1 2 curate Modeling, Pergamon Press, Oxford,
h < < . 34 1991.
k:ch,\,:ﬂI vl kv +17 (N +1)8 (34
[6] Schroeder, M.R.; Synthesis of Low Peak-Factor
Here we have used ky > (N+l)§ —-1> %(N+ 1)%_ Signals and Binary Sequences with Low Au-
The second sum on the right side of (33) can be tocorrelation, IEEE Trans. IT-13, pp. 85-89,
calculated by 1970.
D S PP St
N .
k=ra4l N-Ky = (N+1)}

In the next step the third sum on the right side of
(28) is investigated. It can be shown that [1]

2 4
sz:NI Nk < Wit (36)

holds. This gives

hn (k)2 < _C , 37
Zl WP S Gty (57)
where Cjs is a certain constant. Similar arguments
show [1]
lhn (k)[* < (38)
EN o
This gives
C <1+ — (39)
YT v+ nE

For a complete proof see [1].
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