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An Extension of Sandberg’s Representation Theorem for Linear
Time-Continuous Systems
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Abstract

The input output map of linear time-continuous systems is investigated. The class of all systems
for which the input output map is given by the usual integral is investigated. A complete
characterization of this class of systems is given in the paper.
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1 Introduction

This paper deals with an extension of a representation theorem for linear time-continuous sys-
tems recently discovered by I.W. Sandberg. It was shown by [.W. Sandberg, that if a linear
time-continuous causal system satisfies certain conditions, then the representation

t

()= [ b(t.7)a(r)dr+ Tim (SP.)0) M

— 00

holds for all ¢ € IR. Here the function h has the usual impulse-response interpretation and the
function P,x is given by (P,z)(t) = «(¢) if t < @ and (P,z)(t) = 0if t > a. So if the signal z is
nonzero on a finite time interval [a, b] only then the input-output map of the system S is given
for that signal by

b
(52)(t) = / h(t, 7)e(r) dr . (2)

The main idea of the theory of time-continuous single-input single-output linear systems is that
every such system .S has an input-output map that can be represented by

o0

(S2)(t) = / h(t, 7)a(r) dr . (3)

— 00

The system .S need not be a causal system. Almost always it is emphasized that the representa-
tion (3) holds for all time-continuous linear systems [5] [6]. It was recently discovered that such
a representation does not hold for all time-continuous single-input single-output linear systems
S. The first counter examples were constructed in [3] [8].
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2 Sandberg’s Condition

At first we need some preliminaries. Let IR be the set of real numbers, and let L*°(IR) denote
the normed signal space of essentialy bounded real valued Lebesgue measurable functions z.
The norm is given by

|z]] = esssupierle(t)] - (4)
A linear system is a linear map of L°°(IR) into itself. A linear system S is called causal if

the equation P,S = P,SP, holds for all « € IR. We refer to the following two conditions as
Sandberg’s conditions:

A1) For each t and a € IR with a < t, there is a real constant ¢;, such that

¢
(S} 1)) < cra- [ lo(r)ldr )

holds for all 2 € L*(IR) with 2(7) = 0 for 7 < a.

A2) The inequality sup,cp |(SP.)(t)| < oo holds for each 2 € L™ (IR) and ¢ € IR.

Let 7 € IR be an arbitrary number. We consider for ¢ > 0 the signal

% T € [T, T+ 0)

wrs(T) = { 0 7 ¢[r,7+9). (6)
The following theorem was shown in [8].

Theorem 1 (Sandberg) Let S be a causal system that meats Sandberg’s conditions A1) and
A2). Then the following holds for all t € IR and all signals x € L*(IR).
i) The function
h(t,7) = lim (Sw;5)(t) (7)
§—=0

exists for allmost all T € IR.
ii) The system S has the representation

t

(Sz)(t) = / h(t,7)z(T)dr + ali}moo(SPax)(t) . (8)
Similar results for time-discrete linear systems were obtained in [1] and [2].

At next we want to give an extension of Sandberg’s representation theorem. Let p be a positive
number which satisfies 1 < p < co. We say that a system S satisfies the condition A(p) if the
following holds.

For each ¢t and « € IR with a < ¢, there is a real constant ¢; ,(p) such that

(52)(0)] < cualp)- ( / |x<r>|pdr) g

holds for all 2 € L*(IR) with z(7) = 0 for 7 < a.

At first we have to show that the condition A(p) is weaker than the condition Al), that means
if the system S satisfies the condition A1) then it also satisfies the condition A(p) for all p > 1.



For this let @ < ¢t be an abitriary number and let 2 € L (IR) be a signal with z(7) = 0 for
7 < a. Then we have for p > 1
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/|x(7’)|d7’ _ /|x(7’)|-1- dr

a a

IN
N
S

"

2

S

2

\]
v

=
N
B

—_

2

\]
v

— (t—a)i- (/|x(7')|pd7') . (10)

(Here we have used Hélders inequality with ]l)—l— % = 1.) That means if the system S satisfies the
condition A1) with the constant ¢, than it satisfies also the condition A(p) with the constant

(t— a)% - ¢t,q. In the paper the following result is proved.
Theorem 2 Let S be an abitriary causal system such that the conditions A(p) for a p > 1 and
A2) are met. Then the following holds:
i) The function
h(t,7) = lim (Sw;5)(t) (11)
§—0

exists for allmost all T € IR and satisfies

(/|h(t,r)|qdr) e (12)

for each a € IR, where q is given by Zl)—l— % =1/7].
ii) The input-output map of the system S has the form (8).

Next, BIBO-stable (bounded input-bounded output) linear systems are investigated. This means
that a positive number C exists, such that for all signals « € L°(IR) the inequality

[Sz]] < Cy-lz] (13)

holds.
Since we have [(SP,z)(t)] < Cy - ||Pyz]| < Ci|z||, all BIBO-stable systems satisfy the condition
A2). With the Theorem 2 we get the following Corollary.

Corollary 1 Let S be a causal BIBO-stable linear system such that the condition A(p) is met
for some p > 1. Then the following representation holds for all signals x € L™ (IR)

(52)(t) = (S12)(t) + (S0 (1) - (14)

The system Sy has the form
i

(S10)0) = [ h(t.7)a(r) dr . (15)
The function h(t,T) in (15) is given by h(t,7) = lims_o(Sw;5)(t), which exists for almost all
T € IR.



The system S is defined by
(Seo)(t) = ali_}r{)lo(SPax)(t) . (16)

Both systems Sy and S, are causal BIBO-stable linear systems.

The limit in (16) exists for all signals @ € L*(IR). The representation (14) means that each
causal BIBO-stable linear system S which satisfies the condition A(p) can be split into two
subsystems S7 and S., which are given by (15) and (16). The input-output map of the system
S1 is given by the usual integral. The input-output map of the system S., don’t has this form.
For all signals  which are non zero on a finite time interval only, we have

(Seot) (1) = lim (SPa) (1) = 0 (17)

for all t € IR. That means the impulse-response of the system S, is zero for all ¢ € IR. So the
system S and S have the same impulse-response.

3 Strongly Continuous Systems

At the end of this paper we investigate those causal BIBO-stable linear systems S, that are
characterized by their impulse response. Of course we suppose, that such a system satisfies
condition A(p) for some p > 1. That means to find all causal BIBO-stable linear systems, so
that the indentity S = S holds. For this reason it is necessary to introduce one more concept.
A sequence of input signals z,, € L*(IR) is said to be convergent to a signal € L*(IR), if a
positive number C exists, so that

|zl < Ch ,n €N, (18)
and
lim z,(t) = z(t) (19)

hold for all ¢t € IR.
A causal BIBO-stable linear system .S is said to be a strongly continuous system, if for each
convergent sequence of signals z,, € L*(IR) the equation

(S2)(t) = lim (Sz,)(t) (20)

n—0oo

holds.

Each norm-convergent sequence of signals #,, € L°(IR) is also convergent but not vice-versa.
This means the concept of convergence is weaker than the concept of norm-convergence. With
these consepts we get the following theorem.

Theorem 3 Let S be a causal BIBO-stable linear system such that condition A(p) is met for
some p > 1. Then the system S has the form

t

(S2)(t) = / h(t, 7)e(r) dr (21)

— 00

if and only if the system S is strongly continuous.



Theorem (3) characterizes all causal BIBO-stable systems, for which the input-output map is
given by the usual integral. Of course the systems have to satisfy condition A(p) for some p > 1.
It can also be shown that the system S in Theorem (3) need not be a causal system. These is
a consequence of the following Corollary.

Corollary 2 Let S be a BIBO-stable strongly continuous linear system such that condition A(p)
is met for some p > 1. Then the system S is also causal.

4 Proof of Theorem 3

In this section a proof of the Theorem 3 is given.

Let S be an arbitrary causal BIBO-stable linear system such that condition A(p) is met for
some p > 1. Suppose that the system S is strongly continuous. Let z € L°°(IR) be an arbitrary
input signal. For each n € IN we consider the signal

_ e ft[<n
xn(t)—{ 0 Jt|>n.

We have

(S2,) (1) = / h(t, 7)a(r) dr . (22)

Since the system S is strongly continuous we have

n

(Sz)(t) = nh_}n(r)lo(an)(t) = nh_}rréo h(t,7)x(T)dr

_ / h(t, 7)a(r) dr . (23)

So we have equation (21) for all input signals.

Now let z, be an arbitrary convergent sequence. Suppose that the input output map of the
system S is given by (21). Then we have

nlggo(sxn)(t) = nh_>r%o h(t, )z, (T)dr
¢

- / h(t,7)a(r)dr = (Sx)(t) , (24)

— 00

so the system S is strongly continuous. This proofs the Theorem 3.
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