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An Extension of Sandberg's Representation Theorem for Linear
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Abstract

The input output map of linear time-continuous systems is investigated. The class of all systems

for which the input output map is given by the usual integral is investigated. A complete

characterization of this class of systems is given in the paper.
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1 Introduction

This paper deals with an extension of a representation theorem for linear time-continuous sys-

tems recently discovered by I.W. Sandberg. It was shown by I.W. Sandberg, that if a linear

time-continuous causal system satis�es certain conditions, then the representation

(Sx)(t) =

t

Z

�1

h(t; �)x(�) d� + lim

a!�1

(SP

a

f)(t) (1)

holds for all t 2 IR. Here the function h has the usual impulse-response interpretation and the

function P

a

x is given by (P

a

x)(t) = x(t) if t � a and (P

a

x)(t) = 0 if t > a. So if the signal x is

nonzero on a �nite time interval [a; b] only then the input-output map of the system S is given

for that signal by

(Sx)(t) =

b

Z

a

h(t; �)x(�) d� : (2)

The main idea of the theory of time-continuous single-input single-output linear systems is that

every such system S has an input-output map that can be represented by

(Sx)(t) =

1

Z

�1

h(t; �)x(�) d� : (3)

The system S need not be a causal system. Almost always it is emphasized that the representa-

tion (3) holds for all time-continuous linear systems [5] [6]. It was recently discovered that such

a representation does not hold for all time-continuous single-input single-output linear systems

S. The �rst counter examples were constructed in [3] [8].

1

Heinrich-Hertz-Institut f�ur Nachrichtentechnik Berlin GmbH, Broadband Mobile Communication Networks,

Einsteinufer 37, D-10587 Berlin, Germany

2

Technische Universit�at Dresden, Fakult�at f�ur Elektrotechnik, Institut f�ur Regelungs- und Steuerungstheorie,

Mommsenstr. 13, D-01062 Dresden, Germany



2 Sandberg's Condition

At �rst we need some preliminaries. Let IR be the set of real numbers, and let L

1

(IR) denote

the normed signal space of essentialy bounded real valued Lebesgue measurable functions x.

The norm is given by

kxk = esssup

t2IR

jx(t)j : (4)

A linear system is a linear map of L

1

(IR) into itself. A linear system S is called causal if

the equation P

a

S = P

a

SP

a

holds for all a 2 IR. We refer to the following two conditions as

Sandberg's conditions:

A1) For each t and a 2 IR with a < t, there is a real constant c

t;a

such that

j(Sx)(t)j � c

t;a

�

t

Z

a

jx(�)j d� (5)

holds for all x 2 L

1

(IR) with x(�) = 0 for � < a.

A2) The inequality sup

a2IR

j(SP

a

x)(t)j <1 holds for each x 2 L

1

(IR) and t 2 IR.

Let � 2 IR be an arbitrary number. We consider for � > 0 the signal

w

�;�

(�

1

) =

(

1

�

�

1

2 [�; � + �)

0 �

1

=2 [�; � + �) :

(6)

The following theorem was shown in [8].

Theorem 1 (Sandberg) Let S be a causal system that meats Sandberg's conditions A1) and

A2). Then the following holds for all t 2 IR and all signals x 2 L

1

(IR).

i) The function

h(t; �) = lim

�!0

(Sw

�;�

)(t) (7)

exists for allmost all � 2 IR.

ii) The system S has the representation

(Sx)(t) =

t

Z

�1

h(t; �)x(�) d� + lim

a!�1

(SP

a

x)(t) : (8)

Similar results for time-discrete linear systems were obtained in [1] and [2].

At next we want to give an extension of Sandberg's representation theorem. Let p be a positive

number which satis�es 1 � p < 1. We say that a system S satis�es the condition A(p) if the

following holds.

For each t and a 2 IR with a < t, there is a real constant c

t;a

(p) such that

j(Sx)(t)j � c

t;a

(p) �

0

@

t

Z

a

jx(�)j

p

d�

1

A

1

p

(9)

holds for all x 2 L

1

(IR) with x(�) = 0 for � < a.

At �rst we have to show that the condition A(p) is weaker than the condition A1), that means

if the system S satis�es the condition A1) then it also satis�es the condition A(p) for all p > 1.



For this let a < t be an abitriary number and let x 2 L

1

(IR) be a signal with x(�) = 0 for

� < a. Then we have for p > 1

t

Z

a

jx(�)j d� =

t

Z

a

jx(�)j � 1 � d�

�

0

@

t

Z

a

jx(�)j

p

d�

1

A

1

p

�

0

@

t

Z

a

1 d�

1

A

1

q

= (t� a)

1

q

�

0

@

t

Z

a

jx(�)j

p

d�

1

A

1

p

: (10)

(Here we have used H�olders inequality with

1

p

+

1

q

= 1.) That means if the system S satis�es the

condition A1) with the constant c

t;a

than it satis�es also the condition A(p) with the constant

(t� a)

1

q

� c

t;a

. In the paper the following result is proved.

Theorem 2 Let S be an abitriary causal system such that the conditions A(p) for a p > 1 and

A2) are met. Then the following holds:

i) The function

h(t; �) = lim

�!0

(Sw

�;�

)(t) (11)

exists for allmost all � 2 IR and satis�es

0

@

t

Z

a

jh(t; �)j

q

d�

1

A

1

q

<1 (12)

for each a 2 IR, where q is given by

1

p

+

1

q

= 1 [7].

ii) The input-output map of the system S has the form (8).

Next, BIBO-stable (bounded input-bounded output) linear systems are investigated. This means

that a positive number C

1

exists, such that for all signals x 2 L

1

(IR) the inequality

kSxk � C

1

� kxk (13)

holds.

Since we have j(SP

a

x)(t)j � C

1

� kP

a

xk � C

1

kxk, all BIBO-stable systems satisfy the condition

A2). With the Theorem 2 we get the following Corollary.

Corollary 1 Let S be a causal BIBO-stable linear system such that the condition A(p) is met

for some p � 1. Then the following representation holds for all signals x 2 L

1

(IR)

(Sx)(t) = (S

1

x)(t) + (S

1

x)(t) : (14)

The system S

1

has the form

(S

1

x)(t) =

t

Z

�1

h(t; �)x(�) d� : (15)

The function h(t; �) in (15) is given by h(t; �) = lim

�!0

(Sw

�;�

)(t), which exists for almost all

� 2 IR.



The system S

1

is de�ned by

(S

1

x)(t) = lim

a!1

(SP

a

x)(t) : (16)

Both systems S

1

and S

1

are causal BIBO-stable linear systems.

The limit in (16) exists for all signals x 2 L

1

(IR). The representation (14) means that each

causal BIBO-stable linear system S which satis�es the condition A(p) can be split into two

subsystems S

1

and S

1

which are given by (15) and (16). The input-output map of the system

S

1

is given by the usual integral. The input-output map of the system S

1

don't has this form.

For all signals x which are non zero on a �nite time interval only, we have

(S

1

x)(t) = lim

a!1

(SP

a

x)(t) = 0 (17)

for all t 2 IR. That means the impulse-response of the system S

1

is zero for all t 2 IR. So the

system S and S

1

have the same impulse-response.

3 Strongly Continuous Systems

At the end of this paper we investigate those causal BIBO-stable linear systems S, that are

characterized by their impulse response. Of course we suppose, that such a system satis�es

condition A(p) for some p � 1. That means to �nd all causal BIBO-stable linear systems, so

that the indentity S = S

1

holds. For this reason it is necessary to introduce one more concept.

A sequence of input signals x

n

2 L

1

(IR) is said to be convergent to a signal x 2 L

1

(IR), if a

positive number C

1

exists, so that

kx

n

k � C

1

; n 2 IN ; (18)

and

lim

n!1

x

n

(t) = x(t) (19)

hold for all t 2 IR.

A causal BIBO-stable linear system S is said to be a strongly continuous system, if for each

convergent sequence of signals x

n

2 L

1

(IR) the equation

(Sx)(t) = lim

n!1

(Sx

n

)(t) (20)

holds.

Each norm-convergent sequence of signals x

n

2 L

1

(IR) is also convergent but not vice-versa.

This means the concept of convergence is weaker than the concept of norm-convergence. With

these consepts we get the following theorem.

Theorem 3 Let S be a causal BIBO-stable linear system such that condition A(p) is met for

some p � 1. Then the system S has the form

(Sx)(t) =

t

Z

�1

h(t; �)x(�) d� (21)

if and only if the system S is strongly continuous.



Theorem (3) characterizes all causal BIBO-stable systems, for which the input-output map is

given by the usual integral. Of course the systems have to satisfy condition A(p) for some p � 1.

It can also be shown that the system S in Theorem (3) need not be a causal system. These is

a consequence of the following Corollary.

Corollary 2 Let S be a BIBO-stable strongly continuous linear system such that condition A(p)

is met for some p � 1. Then the system S is also causal.

4 Proof of Theorem 3

In this section a proof of the Theorem 3 is given.

Let S be an arbitrary causal BIBO-stable linear system such that condition A(p) is met for

some p � 1. Suppose that the system S is strongly continuous. Let x 2 L

1

(IR) be an arbitrary

input signal. For each n 2 IN we consider the signal

x

n

(t) =

(

x(t) jtj � n

0 jtj > n :

We have

(Sx

n

)(t) =

n

Z

�n

h(t; �)x(�) d� : (22)

Since the system S is strongly continuous we have

(Sx)(t) = lim

n!1

(Sx

n

)(t) = lim

n!1

n

Z

�n

h(t; �)x(�) d�

=

t

Z

�1

h(t; �)x(�) d� : (23)

So we have equation (21) for all input signals.

Now let x

n

be an arbitrary convergent sequence. Suppose that the input output map of the

system S is given by (21). Then we have

lim

n!1

(Sx

n

)(t) = lim

n!1

t

Z

�1

h(t; �)x

n

(�) d�

=

t

Z

�1

h(t; �)x(�) d� = (Sx)(t) ; (24)

so the system S is strongly continuous. This proofs the Theorem 3.
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