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ABSTRACT

Recently proposed methods for ordering sparse symmetric matri-
ces are discussed and their performance is compared with that of
the Minimum Degree and the Minimum Local Fill algorithms. It is
shown that these methods applied to symmetrized modified nodal
analysis matrices yield orderings significantly better than those ob-
tained from the Minimum Degree and Minimum Local Fill algo-
rithms, in some cases at virtually no extra computational cost.

1. INTRODUCTION

Simulating an electrical circuit requires the solution of solve nu-
merous linear equations of the form

Ax = b; (1)

where A is a real or complex n � n matrix [1–3]. Although A is
unsymmetric and indefinite, (1) is solved directly without pivoting
for numerical accuracy. In fact, it is assumed that one can, from a
numerical point of view, solve

(PAP T
)y = Pb (2)

by forward elimination and back substitution for any n � n per-
mutation matrix P and then set x = PT y. That is, the diagonal
entries may be chosen as pivots, in any order [3, 4].

Typically, A is very large and extremely sparse, i.e., only few
of its entries are nonzero. Unfortunately, as the elimination phase
progresses, new nonzeros are introduced:

Usually, the coefficient matrix PAPT is successively over-
written by the matrix L + U � idn, where L and U are factors of
PAP T ,

LU = PAP T ; (3)

L being unit lower triangular and U being upper triangular, and
idn is the n � n identity matrix [3, 5, 6]. In general, the matrix
L+U � idn will have nonzeros at positions where the coefficient
matrix PAP T has zeros. Those newly created nonzeros are called
fill-ins, and their total is called fill [7, 8].

The coefficient matrices of all linear equations to solve usually
have the same zero-nonzero pattern. Hence, the same permutation
matrixP is used throughout the simulation [3,5]. Since the amount
of fill created, and hence, the computational complexity of solving
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equation (1), heavily depend on P , a deliberate choice of P is ex-
tremely important for the overall performance of circuit simulation
software.

Various heuristics have been proposed, which aim at accept-
able low, rather than minimum, fill [7], as minimizing the fill ap-
pears to be harder than solving the linear equations at hand without
taking advantage of their sparsity [9].

This paper focuses on so-called local algorithms, which mimic
Gaussian elimination based on the zero-nonzero pattern of the co-
efficient matrix alone, under the assumption that nonzeros do not
accidentially cancel out. These methods determine a pivoting or-
der by choosing, in each elimination step, a pivot that minimizes
some scoring function [7].

MARKOWITZ was the first to propose heuristics that aim at
the creation of low fill in Gaussian elimination [10]. In the Min-
imum Local Fill (MF) algorithm, the score of a diagonal entry is
the number of fill-ins that would be created in the next elimination
step if that entry was chosen as the next pivot. Although mention-
ing that strategy, MARKOWITZ recommended using the following
scoring function instead, as its values are easier to obtain [10]:

Let ci and ri be the number of off-diagonal nonzeros in the
ith column and row, respectively, of the zero-nonzero pattern that
evolved from the preceding eliminations. Obviously, the product
ciri, which is called the Markowitz product, is an upper bound
on the number of fill-ins introduced when the ith variable in the
current scheme is eliminated next using the ith equation. To chose
a pivot with minimum Markowitz product has become known as
Markowitz’ algorithm.

When applied to structurally symmetric matrices (Ai;j 6= 0 iff
Aj;i 6= 0), Markowitz’ algorithm is also called Minimum Degree
(MD) algorithm [8] for reasons that become clear in Section 2.

A drawback of the MF algorithm is its immense computational
cost, which may be two orders of magnitude higher than that of a
version of the MD algorithm [11]. On the other hand, it has been
found especially in circuit simulation that the MF algorithm saves
at most 5% in factorization operations compared with Markowitz’
algorithm [3].

Only recently, the MF algorithm as well as newly proposed
variants of both the MF and MD algorithms have been found to
yield significantly better orderings than the MD algorithm on cer-
tain test suites of symmetric matrices [11–15], and the running
times of some of those algorithms are just in the order of those of
the MD algorithm [11, 12, 14, 15].

Despite of the fact that the savings in fill of those variants
heavily depend on the field of application and that these savings in-
crease with increasing problem size [12], extensive tests and com-
parisons of those variants on matrices derived from circuits of a
size representing today’s simulation tasks are still missing.
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The purpose of this paper is to report on such tests and to show
that those new heuristics can be successfully applied to the modi-
fied nodal equations.

Our review of PARTER’s interpretation of Gaussian elimina-
tion in terms of graphs [16] and the data structure underlying local
symmetric ordering methods in Section 2 provides the basis for the
definition of the recently proposed ordering heuristics in Section 3.

In Section 4, we compare the performance of the MD and MF
algorithms and the algorithms from Section 3 on a test set of 15
matrices which have been obtained from symmetrizing Jacobians
of modified nodal equations extracted from the circuit simulator
TITAN [2] of Infineon Technologies in the following way [17]:

Initially, diagonal entries with Markowitz product zero are cho-
sen as pivots, as many as possible. Since the corresponding elim-
ination steps do not create any fill, the zero-nonzero pattern ob-
tained after those steps is that of a submatrix eA obtained from A
by removing the pivot rows and columns. Now, a symmetric or-
dering method is applied to j eAj + j eAjT , thereby completing the
pivoting order for A. That way, much of the unsymmetry of A
is removed by the initial steps of Markowitz’ algorithm so that eA
will be symmetric or nearly so.

We obtain orderings that are, in terms of the resulting number
of factorization operations, significantly better than those obtained
from the MD and MF algorithms, in some cases at virtually no
extra computational cost.

2. DATA STRUCTURE OF LOCAL SYMMETRIC
ORDERING METHODS

Throughout this section, A is a structurally symmetric n� n ma-
trix, i.e., Ai;j 6= 0 iff Aj;i 6= 0, for all i and j, 1 � i; j � n.

2.1. Gaussian elimination in terms of graphs

A graph is an ordered pair (V; E) of a finite set V of vertices and
a set E of edges, E �

�
fv; wg � V j v 6= w

	
.

Two vertices v; w 2 V are adjacent in the graph G, G =

(V;E), if fv; wg 2 E. For w 2 V and W � V , adjG(w) and
adjG(W ) denote the adjacent set of w and W , respectively, i.e.,

adjG(w) =
�
u 2 V j fu; wg 2 E

	
;

adjG(W ) =

[
u2W

adjG(u) nW:

ForX 2 V [P(V ), we denote the degree ofX in G by degG(X),

degG(X) = j adjG(X)j;

where j � j denotes cardinality, and P(V ) is the power set of V .
A vertex v 2 V and an edge e 2 E are incident if v 2 e.
The graph of A, denoted G(A), is the graph (V;E) defined by

V = f1; : : : ; ng;

E =

�
fi; jg j Ai;j 6= 0; i 6= j

	
:

The elimination graph Gv is obtained by eliminating v 2 V
from G = (V;E), i.e., by removing v and its incident edges
from G, and connecting all vertices previously adjacent to v [16],
thereby creating a set �llG(v) of new edges or fill-ins.

Choosing pivots down the diagonal in PAPT for some n�n
permutation matrix P corresponds to selecting vertices of G(A) in

the order �(1), �(2), : : : , �(n) for some bijection � : V ! V ,
which we call the pivoting order. Thus, local ordering algorithms
are equivalent to the selection of vertices as follows:

Input: Graph G = (V;E), scoring function s.
Step 1: S := ;.
Step 2: Pick v 2 V nS with s(v;G) = min

w2V nS
s(w;G).

Step 3: S := S [ fvg, �(jSj) := v, G := Gv .
Step 4: If S 6= V , goto Step 2.
Output: Pivoting order �.

In particular, if the input graph G equals G(A), the above al-
gorithm is the MD and the MF algorithm for s(v;G) = degG(v)
and s(v;G) = j �llG(v)j, respectively.

2.2. Clique representations of elimination graphs

A clique is a graph in which any two distinct vertices are adjacent.
The vertex set of a clique will also be called a clique.

A set C � P(V ) is called a clique representation of the graph
G = (V;E) if E =

�
fv; wg � C j C 2 C; v 6= w

	
. In other

words, clique representations of G(A) correspond to coverings of
the nonzeros of A by full symmetric minors. Note also that E is a
(trivial) clique representation of G.

If C is a clique representation of G and v 2 V , then the set C0,

C
0
= fC 2 C j v =2 Cg [ fadjG(v)g (4)

is a clique representation of Gv .

2.3. Indistinguishable vertices

The vertices v; w 2 V are indistinguishable [8], v �
G
w, if

adjG(v) [ fvg = adjG(w) [ fwg: (5)

If v �
G
w, then degG(v) = degG(w) and �llG(v) = �llG(w).

Moreover, for any reasonable scoring function, it should suffice to
determine the score of one of v and w only. Hence, we may main-
tain the quotient graph G=�

G
rather than G itself, where G=�

G
=

(V=�
G
; E0

) and

E0
=

�
f[v]�

G

; [w]�
G

g j fv; wg 2 E; [v]�
G

6= [w]�
G

	
:

3. IMPROVED SCORING FUNCTIONS

Let G be the current elimination graph, G = (V;E), � be the
equivalence relation of indistinguishable vertices, and let C be a
clique representation of G=�. For simplicity, we denote the class
[v]� by [v].

For each vertex [v] of G=�, let �[v] be the list of cliques con-
taining [v]. Let c[v] be the number of cliques in that list that have
been created by eliminating vertices and assume that those created
cliques are located at the beginning of the list.

We define scoring functions in terms of G=�. ForW � V=�,
we define

kWk =

X
[w]2W

j[w]j:
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3.1. Bounds on the local fill

The scoring function of the MD algorithm represents an upper
bound on the number of fill-ins introduced by eliminating a ver-
tex from G, since

# : x 7! (x2 � x)=2

is monotonic on the set of nonnegative integers and j �llG(v)j �
#(degG(v)) for all v 2 V .

That bound may be improved since some of the #(degG(v))
potential fill-in edges inGv are edges ofG that are easy to identify:

First, if v is indistinguishable from w in G, v 6= w, then elim-
inating v from G does not create any new edges adjacent to w in
Gv . Hence, the external degree degG([v]) of v represents an upper
bound on j �llG(v)j,

j �llG(v)j � #(degG([v])): (6)

Taking the external degree as scoring function usually produces
less overall fill than taking the degree [8].

Further, if C 2 C is a clique, then the elimination of [v] from
G cannot create any new edge f[u]; [w]g � C. Even if only those
cliques are considered that contain [v], the bound in (6) may be
improved in several ways:

The Approximate Minimum Local Fill (AMF) algorithm of ROTH-
BERG and EISENSTAT uses the upper bound sAMF0 ,

sAMF0([v]) = #(degG([v]))�

(
0 if c[v] = 0

#(k�[v](1) n f[v]gk) otherwise

as its scoring function, thereby taking into account the most re-
cently eliminated clique only [15]. We will denote that scoring
function that takes in account the largest, rather than the most re-
cently created, clique, by sAMF1 .

NG and RAGHAVAN propose to consider all cliques in �[v]
rather than just one [11].

3.2. Looking ahead

While local ordering algorithms usually consider the fill intro-
duced in the next elimination step only, the concept of indistin-
guishability provides a simple means to look some steps ahead:
Since the total number of fill-ins created when all vertices in [v] are
eliminated from G immediately upon each other is just j �llG(v)j,
ROTHBERG and EISENSTAT consider dividing fill bounds by j[v]j
[15]. Their (Approximate) Minimum Mean Local Fill ((A)MMF)
heuristics are based on the scoring functions sMMF� and sAMMF�

0
,

sMMF�([v]) = j �llG(v)j=j[v]j
�;

sAMMF�
0
([v]) = sAMF0([v])=j[v]j

�

with � = 1. According to [15], a version with � = 1=2 “produced
slightly better results”.

We denote by sAMMF�
1

that scoring function that results from
application of the above trick to sAMF1 .

3.3. Further variants

Among the various improvements of the MD and MF algorithms
that we do not discuss in this paper are the tie breaking techniques
of [12, 14], the Modified Multiple Minimum Degree (MMMD) al-
gorithm of [11], and the correction terms of [11, 15].

4. COMPUTATIONAL RESULTS

We have implemented the MD and MF algorithms as well as their
variants described in Section 3 in the language C as an extension to
the ordering methods of the SPOOLES library [18], with several
modifications to the original data structures.

In addition to the techniques described in Section 2, we ap-
ply further well-known techniques in our implementation, such as
element absorption, incomplete score update, and multiple elimi-
nation, see [8].

The code was compiled with the cc compiler (Workshop Com-
pilers 4.2 30 Oct 1996 C 4.2) using the options “-fast -fsimple=2 -
xtarget=ultra -xarch=v8ultra“ under SunOS Release 5.7 and run on
one of the CPUs (sparcv9+vis, 400 MHz clock rate, 4 MB cache,
17:4 SPECint95, 25:7 SPECfp95) of a SUN Enterprise E4500
workstation with 6 Gbytes of memory.

We chose the Multiple Minimum Degree (MMD) algorithm
[8], a version of the MD algorithm based on external degrees,
which is probably the most widely used local symmetric ordering
method today, as our reference algorithm.

For all other algorithms, we report ratios, i.e., quantities calcu-
lated for these algorithms divided by the corresponding quantities
for the reference algorithm. We judge algorithms by comparing
the geometric mean of the ratios calculated for the set of matrices.

Our primary measure for comparing ordering algorithms is the
number

Pn

i=1 ci(1 + ri) of factorization operations determined
by the pivoting orders obtained, which represents divisions and
multiplications, where ci and ri are the number of off-diagonal
nonzeros in column and row i of the factors L and U , respectively,
of PAPT , and P is the permutation matrix corresponding to the
pivoting order.

It is well known that ordering heuristics are sensitive to per-
mutations of the rows and columns of the input matrices. There-
fore, the arithmetic means over the quantities measured for 11 runs
with different random orders for inserting the initial scores into the
score heap [18] are the basis for subsequent comparisons.

Our test suite of input data consists of 15 symmetric matrices
( eA obtained from Jacobians of modified nodal equations as de-
scribed in section 1). The matrices are listed in Tab. 1 under the
names “bag” through “X” together with their characteristics and
the performance of the MMD algorithm on them1.

Computational results for some of the algorithms discussed
earlier in this paper are presented in Tab. 2.

We first observe that the improvements of the local fill bound
beyond the one represented by the external degree always lead to
better pivoting orders. We also see that those algorithms that rely
on the exact local fill yield significantly better pivoting orders than
the others.

By comparing the results for the AMF0 and AMMF10 as well
as those for the MMF� and MF algorithms, we see that the looking
ahead technique from Paragraph 3.2 is very useful.

The running times for those heuristics that are based on bounds
on the local fill appear to be roughly the same, and those heuristics
that are based on exact local fill counts are more than one order of
magnitude slower.

After all, the MMF1=2 algorithm leads to the fewest number
of factorization operations, namely 31% less than the MMD algo-
rithm. The AMMF1=21 algorithm, which is the best among those

1More information on the structure of the Jacobians will be given in an
extended version of this paper to be published elsewhere.
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Matrix MMD
Name n m o m0 t/sec.
bag 143854 922936 3:3 � 107 2:0 � 106 7:42
cor 123118 659182 1:7 � 106 7:8 � 105 5:57
eng 4893 33993 1:0 � 106 8:3 � 104 0:16
jac 903 17967 1:1 � 106 3:6 � 104 0:05
m8 10464 197374 3:0 � 107 7:3 � 105 1:27
m14 15766 348968 5:6 � 107 1:3 � 106 2:44
m24 26120 613812 3:9 � 108 3:7 � 106 5:01
m40 156035 1789325 3:4 � 109 1:9 � 107 25:99
sei 3539 280785 1:5 � 108 7:6 � 105 0:51
buc 9751 53427 8:7 � 105 1:1 � 105 0:21
gue 86086 390074 1:4 � 107 7:9 � 105 2:27
te 59418 253584 6:9 � 105 3:4 � 105 1:33
tei 174702 804620 4:6 � 106 1:2 � 106 6:38
xch 10560 55852 8:8 � 105 1:2 � 105 0:23
X 16063 127887 3:1 � 106 2:4 � 105 0:46

Table 1: Test matrices and performance of the MMD algorithm. n
and m are the number of rows and nonzeros, resp.. o, m0 and t de-
note the number of factorization operations, the number of nonze-
ros including the fill, and the CPU time of the MMD algorithm.
The values of o and m0 are rounded to two decimal digits, those of
t to a precision of 10�2sec..

Algorithm o m0 t
AMF0 0:95 0:98 1:3
AMMF1

0 0:91 0:97 1:5

AMMF1=2
1 0:85 0:95 1:4

MF 0:76 0:92 13

MMF1
0:74 0:91 15

MMF1=2
0:69 0:90 14

Table 2: Performance of ordering methods relative to the MMD
algorithm. o, m0 and t denote the number of factorization op-
erations, the number of nonzeros including the fill, and the CPU
time of the ordering algorithm. The reported values are geometric
means over the quantities divided by those for the MMD algorithm
rounded to two decimal digits.

based on bounds, still leads to 15% fewer operations than the
MMD algorithm.

5. CONCLUSIONS

We have reviewed recently proposed local symmetric ordering meth-
ods, i.e., methods for obtaining pivoting orders for sparse symmet-
ric matrices. It was shown that these methods require up to 31%

fewer factorization operations than those obtained from the Mini-
mum Degree algorithm, in some cases at virtually no extra compu-
tational cost, when applied to symmetrized Jacobians of modified
nodal equations.

The performance of the combination from [17] of Markowitz’
algorithm with symmetric methods has yet to be compared to that
of unsymmetric methods such as Markowitz’ algorithm. The re-
sults of such tests will be presented elsewhere.
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