
A NEW METHOD FOR ORDERING SPARSE MATRICES AND ITS PERFORMANCE IN
CIRCUIT SIMULATION

Gunther Reißig

Otto-von-Guericke-Universität Magdeburg
Chair of Systems Theory (J. Raisch), FEIT-IFAT

PF 4120
D-39016 Magdeburg, Germany

URL: http://www.reiszig.de/gunther/

ABSTRACT

Local algorithms for obtaining a pivot ordering for sparse
symmetric coefficient matrices are reviewed together
with their mathematical background and appropriate data
structures. Recently proposed heuristics as well as im-
provements to them are discussed, and their performance,
mainly in terms of the resulting number of factorization
operations, is compared with that of the Minimum De-
gree and the Minimum Local Fill algorithms. It is demon-
strated that a combination of Markowitz’ algorithm with
these symmetric methods applied to the unsymmetric ma-
trices arising in circuit simulation is capable of accelerat-
ing the simulation significantly.

1. INTRODUCTION

Simulating an electrical circuit requires the solution of
numerous linear equations of the form

Ax = b, (1)

where A is a real or complex n × n matrix [Chua et al.,
1987, Feldmann et al., 1992, Nagel, 1975]. Solving (1)
is also necessary in other types of analyses, such as DC-
and small signal analysis, and the efficiency by which this
is done determines the quality of simulation tools as a
whole to a great extent.

In many professional simulation tools, including TI-
TAN [Feldmann et al., 1992], (1) is solved directly
without pivoting for numerical accuracy [Hajj et al.,
1981, Tan, 1986, Nagel, 1975], despite the fact that A is
unsymmetric and indefinite. (To investigate the merits of
that approach is beyond the scope of this paper.) In fact,
one assumes that it is numerically feasible to solve

(PAPT)y = Pb (2)

by Gaussian elimination for any n×n permutation matrix
P and then set x = P T y. That is, the diagonal entries
may be chosen as pivots, in any order [Hajj et al., 1981,
Nagel, 1975].

Usually, A is very large and extremely sparse, i.e., only
few of its entries are nonzero. However, new nonzeros are
introduced during the elimination phase:

The coefficient matrix PAP T is successively overwrit-
ten by the matrix L + U − idn, where

LU = PAP T (3)

and L and U are factors of PAP T , L is unit lower trian-
gular, U is upper triangular, and idn is the n × n iden-
tity matrix [Chua and Lin, 1975, Golub and Van Loan,
1993, Nagel, 1975].

In general, the matrix L+U − idn may have nonzeros
at positions where the coefficient matrix PAP T has ze-
ros. Those newly created nonzeros are called fill-ins, and
their total is called fill [Duff et al., 1986, George and Liu,
1989].

As the coefficient matrices of all linear equations to
solve usually have the same zero-nonzero pattern, the
same permutation matrix P may be used throughout the
simulation [Nagel, 1975, Chua and Lin, 1975]. With the
amount of fill created, the computational complexity of
solving equation (1) heavily depends on P . Thus, a de-
liberate choice of P is extremely important for the overall
performance of circuit simulation software.

Unfortunately, minimizing the fill appears to be harder
than solving the linear equations at hand without taking
advantage of their sparsity [Yannakakis, 1981]. There-
fore, various heuristics have been proposed, which aim at
acceptable low fill rather than minimum fill [Duff et al.,
1986]. Among them, there are what is called local al-
gorithms, which mimic Gaussian elimination based on
the zero-nonzero pattern of the coefficient matrix alone,
where it is assumed that nonzeros do not accidentally can-
cel out.

Those local methods always choose a pivot that min-
imizes some scoring function and thereby determine an
overall pivoting order.

MARKOWITZ was the first to propose heuristics for
fill-in minimization in Gaussian elimination [Markowitz,
1957]. In his Minimum Local Fill (MF) algorithm, the
score of a diagonal entry is the number of fill-ins that
would be created in the next elimination step if that en-

try was chosen as the next pivot. The following scoring
function was also proposed in [Markowitz, 1957]:

Let ci and ri be the number of off-diagonal nonzeros in
the ith column and row, respectively, of the zero-nonzero
pattern that has been obtained from the preceding elimi-
nations. The product ciri is called the Markowitz prod-
uct and is an upper bound on the number of fill-ins in-
troduced when the ith variable in the current scheme is
eliminated next using the ith equation. To chose a pivot
with minimum Markowitz product has become known as
Markowitz’ algorithm.

If A is structurally symmetric, i.e., Ai,j 6= 0 iff Aj,i 6=
0, Markowitz’ algorithm is called Minimum Degree (MD)
algorithm [George and Liu, 1989].

The computational cost of the MF algorithm may be
two orders of magnitude higher than that of a version of
the MD algorithm [Ng and Raghavan, 1999], which is a
serious drawback. In addition, it has been found espe-
cially in circuit simulation that the MF algorithm saves at
most 5% in factorization operations compared with other
algorithms [Nagel, 1975].

Only recently, it has been found that the MF algo-
rithm as well as newly proposed variants of both the MF
and MD algorithms yield significantly better orderings
than the MD algorithm on certain test suites of symmet-
ric matrices [Cavers, 1989, Lustig et al., 1992, Mészáros,
1998, Rothberg and Eisenstat, 1998, Ng and Raghavan,
1999]. The running times of some of those algorithms
are just in the order of those of the MD algorithm [Cavers,
1989, Mészáros, 1998, Rothberg and Eisenstat, 1998, Ng
and Raghavan, 1999].

The savings in fill of those variants heavily depend
on the field of application and increase with increasing
problem size [Cavers, 1989], but, unfortunately, exten-
sive tests and comparisons of those variants on matrices
derived from circuits of a size representing today’s simu-
lation tasks are still missing.

A first step towards efficient algorithms for high-
quality ordering of sparse, unsymmetric matrices in cir-
cuit simulation was presented in [Reißig and Klimpel,
2001] and tested in [Reißig, 2001]:

Initially, diagonal entries with Markowitz product zero
are chosen as pivots, as many as possible. The corre-
sponding elimination steps do not create any fill, hence
the zero-nonzero pattern obtained after those steps is that
of a submatrix Ã obtained from A by removing the pivot
rows and columns. Now, a symmetric ordering method
is applied to |Ã|+ |Ã|T , thereby completing the pivoting
order for A. That way, much of the unsymmetry of A is
removed by the initial steps of Markowitz’ algorithm so
that Ã will be symmetric or nearly so.

It was shown in [Reißig, 2001] that the orderings
obtained from recently proposed ordering heuristics for
symmetric matrices combined with the above method
from [Reißig and Klimpel, 2001,Reißig, 2001] require up
to 31% fewer factorization operations than those obtained
from the Minimum Degree algorithm, in some cases at
virtually no extra computational cost, when applied to

symmetrized Jacobians of modified nodal equations.
The purpose of this paper is to demonstrate that, in

terms of the resulting number of factorization operations,
the method from [Reißig and Klimpel, 2001] outperforms
the MD and Markowitz’ algorithms even if applied di-
rectly to the unsymmetric matrices that arise in circuit
simulation. In fact, our tests on a test suite of 15 matrices
extracted from the circuit simulator TITAN of Infineon
Technologies shows that the method we propose is capa-
ble of saving up to 72% (38% on average) of factorization
operations if compared to Markowitz’ algorithm.

The remaining of this paper is structured as follows. In
section 2, we review PARTER’s interpretation of Gaussian
elimination in terms of graphs [Parter, 1961] and the data
structure underlying local symmetric ordering methods.
These concepts have already been the basis for the defini-
tion of recently proposed ordering heuristics in [Reißig,
2001]. For the convenience of the reader, we compile
them in Section 3.

In Section 4, we compare the performance of the MD
and MF algorithms and the algorithms from Section 3
on a test set of 15 unsymmetric Jacobians of modified
nodal equations extracted from the circuit simulator TI-
TAN [Feldmann et al., 1992] of Infineon Technologies.

2. DATA STRUCTURE OF LOCAL SYMMETRIC
ORDERING METHODS

Throughout this section, A is a structurally symmetric
n × n matrix, i.e., Ai,j 6= 0 iff Aj,i 6= 0, for all i and
j, 1 ≤ i, j ≤ n.

2.1. Gaussian elimination in terms of graphs

A graph is an ordered pair (V,E) of a finite set V of
nodes and a set E of branches, E ⊆

{
{v, w} ⊆ V | v 6=

w
}

.
Two nodes v, w ∈ V are adjacent in the graph G,

G = (V,E), if {v, w} ∈ E. For w ∈ V and W ⊆ V ,
adjG(w) and adjG(W) denote the adjacent set of w and
W , respectively, i.e.,

adjG(w) =
{
u ∈ V | {u,w} ∈ E

}
,

adjG(W) =
⋃

u∈W

adjG(u) \ W.

For X ∈ V ∪ P(V), we denote the degree of X in G by
degG(X),

degG(X) = | adjG(X)|,

where | · | denotes cardinality, and P(V) is the power set
of V .

A node v ∈ V and an branch e ∈ E are incident if
v ∈ e.

The graph of A, denoted G(A), is the graph (V,E)
defined by

V = {1, . . . , n},

E =
{
{i, j} | Ai,j 6= 0, i 6= j

}
.

The elimination graph Gv is obtained by eliminating
v ∈ V from G = (V,E), i.e., by removing v and its
incident branches from G, and connecting all nodes pre-
viously adjacent to v [Parter, 1961], thereby creating a set
fillG(v) of new branches or fill-ins.

Choosing pivots down the diagonal in PAP T for some
n × n permutation matrix P corresponds to selecting
nodes of G(A) in the order π(1), π(2), . . . , π(n) for some
bijection π : V → V , which we call the pivoting order.
Thus, local ordering algorithms are equivalent to the se-
lection of nodes as follows:

Input: Graph G = (V,E), scoring function s.
Step 1: S := ∅.
Step 2: Pick v ∈ V \ S with s(v,G) =

min
w∈V \S

s(w,G).

Step 3: S := S ∪ {v}, π(|S|) := v, G := Gv .
Step 4: If S 6= V , goto Step 2.
Output: Pivoting order π.

In particular, if the input graph G equals G(A), the
above algorithm is the MD and the MF algorithm for
s(v,G) = degG(v) and s(v,G) = |fillG(v)|, respec-
tively.

2.2. Clique representations of elimination graphs

A clique is a graph in which any two distinct nodes are
adjacent. The node set of a clique will also be called a
clique.

A set C ⊆ P(V) is called a clique representation of
the graph G = (V,E) if E =

{
{v, w} ⊆ C | C ∈ C, v 6=

w
}

. In other words, clique representations of G(A) cor-
respond to coverings of the nonzeros of A by full sym-
metric minors. Note also that E is a (trivial) clique rep-
resentation of G.

If C is a clique representation of G and v ∈ V , then the
set C′,

C′ = {C ∈ C | v /∈ C} ∪ {adjG(v)} (4)

is a clique representation of Gv .

2.3. Indistinguishable nodes

The nodes v, w ∈ V are indistinguishable [George and
Liu, 1989], v ∼

G
w, if

adjG(v) ∪ {v} = adjG(w) ∪ {w}. (5)

If v ∼
G

w, then degG(v) = degG(w) and fillG(v) =

fillG(w). Moreover, for any reasonable scoring function,
it should suffice to determine the score of one of v and w
only. Hence, we may maintain the quotient graph G/∼

G

rather than G itself, where G/∼
G

= (V/∼
G

, E′) and

E′ =
{
{[v]∼

G

, [w]∼
G

} | {v, w} ∈ E, [v]∼
G

6= [w]∼
G

}
.

3. IMPROVED SCORING FUNCTIONS

Let G be the current elimination graph, G = (V,E), ∼ be
the equivalence relation of indistinguishable nodes, and
let C be a clique representation of G/∼. For simplicity,
we denote the class [v]∼ by [v].

For each node [v] of G/∼, let κ[v] be the list of cliques
containing [v]. Let c[v] be the number of cliques in that
list that have been created by eliminating nodes and as-
sume that those created cliques are located at the begin-
ning of the list.

We define scoring functions in terms of G/∼. For
W ⊆ V/∼, we define

‖W‖ =
∑

[w]∈W

|[w]|.

3.1. Bounds on the local fill

The scoring function of the MD algorithm represents an
upper bound on the number of fill-ins introduced by elim-
inating a node from G, since

ξ : x 7→ (x2 − x)/2

is monotonic on the set of nonnegative integers and
|fillG(v)| ≤ ξ(degG(v)) for all v ∈ V .

That bound may be improved since some of the
ξ(degG(v)) potential fill-in branches in Gv are branches
of G that are easy to identify:

First, if v is indistinguishable from w in G, v 6= w,
then eliminating v from G does not create any new
branches adjacent to w in Gv . Hence, the external degree
degG([v]) of v represents an upper bound on |fillG(v)|,

|fillG(v)| ≤ ξ(degG([v])). (6)

Taking the external degree as scoring function usually
produces less overall fill than taking the degree [George
and Liu, 1989].

Further, if C ∈ C is a clique, then the elimination of
[v] from G cannot create any new branch {[u], [w]} ⊆ C.
Even if only those cliques are considered that contain [v],
the bound in (6) may be improved in several ways:

The Approximate Minimum Local Fill (AMF) algo-
rithm of ROTHBERG and EISENSTAT uses the upper
bound sAMF0

,

sAMF0
([v]) =

ξ(degG([v])) −

{
0 if c[v] = 0

ξ(‖κ[v](1) \ {[v]}‖) otherwise

as its scoring function, thereby taking into account
the most recently eliminated clique only [Rothberg and
Eisenstat, 1998]. We will denote that scoring function
that takes in account the largest, rather than the most re-
cently created, clique, by sAMF1

.
NG and RAGHAVAN propose to consider all cliques in

κ[v] rather than just one [Ng and Raghavan, 1999].

3.2. Looking ahead

While local ordering algorithms usually consider the fill
introduced in the next elimination step only, the concept
of indistinguishability provides a simple means to look
some steps ahead:
Since the total number of fill-ins created when all nodes
in [v] are eliminated from G immediately upon each
other is just |fillG(v)|, ROTHBERG and EISENSTAT con-
sider dividing fill bounds by |[v]| [Rothberg and Eisen-
stat, 1998]. Their (Approximate) Minimum Mean Local
Fill ((A)MMF) heuristics are based on the scoring func-
tions sMMF α and sAMMF α

0
,

sMMF α([v]) = |fillG(v)|/|[v]|α,

sAMMF α

0
([v]) = sAMF0

([v])/|[v]|α

with α = 1. According to [Rothberg and Eisenstat,
1998], a version with α = 1/2 “produced slightly bet-
ter results”.

We denote by sAMMF α

1
that scoring function that re-

sults from application of the above trick to sAMF1
.

3.3. Further variants

Among the various improvements of the MD and MF al-
gorithms that we do not discuss in this paper are the tie
breaking techniques of [Cavers, 1989, Mészáros, 1998],
the Modified Multiple Minimum Degree (MMMD) algo-
rithm of [Ng and Raghavan, 1999], and the correction
terms of [Rothberg and Eisenstat, 1998, Ng and Ragha-
van, 1999].

4. COMPUTATIONAL RESULTS

In addition to the techniques described in Section 2, our
implementation of the MD and MF algorithms as well
as their variants described in Section 3 includes further
techniques, such as element absorption, incomplete score
update, and multiple elimination, see [George and Liu,
1989].

The code was compiled with the cc compiler (Work-
shop Compilers 4.2 30 Oct 1996 C 4.2) using the op-
tions “-fast -fsimple=2 -xtarget=ultra -xarch=v8ultra“ un-
der SunOS Release 5.7 and run on one of the CPUs
(sparcv9+vis, 400 MHz clock rate, 4 MB cache, 17.4
SPECint95, 25.7 SPECfp95) of a SUN Enterprise E4500
workstation with 6 Gbytes of memory.

We chose the implementation of Markowitz’ algorithm
of the circuit simulator TITAN [Feldmann et al., 1992],
version 6.1a, as our reference algorithm.

Our primary measure for comparing ordering algo-
rithms is the number

n∑

i=1

ci(1 + ri) (7)

of factorization operations determined by the pivoting or-
ders obtained, which represents divisions and multipli-
cations, where ci and ri are the number of off-diagonal

Problem characteristics

M
ar

ko
w

itz
’

A
.

M
M

D

A
M

M
F1

/
2

1

M
M

F1
/
2

m1

m0

u0

m0

u1

m1

Matrix n0

103

m0

103 in % in % in % o o o o

bag 144 995 93 7.3 0 3.5 · 10
7

0.95 0.81 0.68

cor 123 892 74 26 0 1.8 · 10
6

0.87 0.87 0.87

eng 5 42 80 20 0 1.1 · 10
6

0.96 0.97 0.88

jac 1 22 83 17 0 1.0 · 10
6

1.12 1.28 0.92

m8 11 237 83 17 0 3.9 · 10
7

0.77 0.56 0.43

m14 16 418 84 16 0 7.1 · 10
7

0.79 0.64 0.55

m24 26 710 86 13 0 4.1 · 10
8

0.94 0.72 0.49

m40 156 2039 88 12 0 4.2 · 10
9

0.81 0.61 0.48

sei 4 292 96 3.7 0 2.5 · 10
8

0.61 0.34 0.28

buc 10 78 58 51 17 8.4 · 10
5

0.92 0.86 0.69

gue 89 549 69 32 2.3 1.6 · 10
7

0.82 0.88 0.43

te 60 398 64 36 0.032 7.6 · 10
5

1.00 1.01 0.99

tei 175 1206 67 33 0.0099 4.7 · 10
6

1.08 1.04 0.86

xch 11 84 57 52 17 8.3 · 10
5

1.02 0.82 0.73

X 16 170 67 40 11 2.8 · 10
6

0.86 0.76 0.63

geometric mean 0.89 0.78 0.62

Table 1: Circuit matrices and performance of Markowitz’
algorithm and its combination with the MMD, AMMF1/2

1

and MMF1/2 algorithms defined in section 3.2. n0, m0,
and u0 denote the number of rows, nonzeros, and struc-
turally unsymmetric nonzeros, respectively. m1 and u1

denote the number of nonzeros and structurally unsym-
metric nonzeros, respectively, in the matrices remain-
ing after the initial steps of Markowitz’ algorithm. o
denotes the number of factorization operations (7), for
the combinations divided by the corresponding value for
Markowitz’ algorithm. The values in the row “geometric
mean” are geometric means of the ratios reported in the
respective column. The values of n0 and m0 are rounded
to multiples of 1000, all ratios are rounded to a precision
of 10−2, and the remaining quantities are rounded to two
decimal digits.

nonzeros in column and row i of the factors L and U ,
respectively, of PAP T , and P is the permutation matrix
corresponding to the pivoting order.

Our test suite of input data consists of 15 matrices
extracted from the circuit simulator TITAN of Infineon
Technologies. These matrices are listed under the names
“bag” through “X” in Tab. 1.

It is well known that ordering heuristics are sensitive
to permutations of the rows and columns of the input ma-
trices. Therefore, for the combinations of Markowitz’ al-
gorithm with symmetric ordering methods to the prob-
lems “bag” through “sei” listed in Tab. 1, we report the
arithmetic mean of the number of factorization opera-
tions over 11 runs as in the previous paragraph. For
Markowitz’ algorithm, and for the problems buc through
X of Tab. 1, we report the result of one run only.

From the problem data presented in Tab. 1, we see that
the initial steps of Markowitz’ algorithm only slightly re-
duce the dimension of the problem, but remove 4%−43%

of the nonzeros. Moreover, while 3.7% − 52% of the
nonzeros of the original matrices are structurally unsym-
metric, those initial steps remove most or all of them. In
particular, the remaining matrices for the problems “bag”
through “sei” are symmetric, and only about 0.01% −
17% of the nonzeros of the other remaining matrices are
structurally unsymmetric.

For problems leading to symmetric remaining matri-
ces, it is obvious that the advantages of the symmetric
ordering methods investigated over the basic MD heuris-
tic carry over to the combination of those methods with
Markowitz’ algorithm. The results presented in Tab. 1
show that these advantages carry over to the combination
even if the remaining matrices are structurally unsymmet-
ric.

After all, the combination of Markowitz’ algorithm
with the MMD, AMMF1/2

1 , and MMF1/2 algorithms
leads to 11%, 22%, and 38% fewer factorization op-
erations than Markowitz’ algorithm alone, although for
some of the problems from Tab. 1, MARKOWITZ’ al-
gorithm yields better orderings than both MMD and
AMMF1/2

1 .
Furthermore, it is evident that the running time of

the above combination with the MMD algorithm should
never exceed that of an analogous but unsymmetric im-
plementation of Markowitz’ algorithm. In fact, the code
of Markowitz’ algorithm we used was always much
slower than its combination with both the MMD and the
AMMF1/2

1 heuristic.
In general, permuting coefficient matrices to block tri-

angular form [Duff et al., 1986], of which removal of
pivots with zero Markowitz product – the technique we
applied – is a first step, followed by ordering and fac-
toring the diagonal blocks can speed up the solution of
linear equations even further. However, we found that the
effect of that improvement is insignificant if applied to
circuit matrices: For the circuit problems bag through sei
from Tab. 1, removal of pivots with zero Markowitz prod-
uct leads to irreducible matrices in all cases except m40.
For those problems from Tab. 1 that lead to reducible
matrices, the dimension and the number of nonzeros, re-
spectively, of the largest diagonal block would always be
greater or equal to 97.6% and 98.7%, respectively, of the
corresponding numbers for the whole matrix. Further-
more, the number of structurally unsymmetric nonzeros
would be reduced in two cases only and by approximately
0.1%.

A final decision on which of those heuristics is best
would not only depend on the kind of circuits to be sim-
ulated, but also on the computer architecture and the spe-
cific numerical factorization algorithm used [Lustig et al.,
1992] and is beyond the scope of this paper. However, let
us show by an example that the savings in factorization
operations of the MMF1/2 over the AMMF1/2

1 heuristic
may very well reduce the overall simulation time:

The largest CPU time for the MMF1/2 algorithm was
2h43min, achieved for the “m40” example for which ap-

plication of the AMMF1/2
1 algorithm took only 47sec..

However, a transient simulation of that example with
TITAN [Feldmann et al., 1992], version 6.1a, using
the pivot ordering obtained from Markowitz’ algorithm,
spent over 138h on factorizations, so that the savings of
the MMF1/2 algorithm in factorization operations of 21%

relative to the AMMF1/2
1 heuristic should outweigh the

larger CPU time of the former.

5. CONCLUSIONS

We have reviewed recently proposed local symmetric
ordering methods, i.e., methods for obtaining pivot or-
derings for sparse symmetric matrices, as well as some
straightforward improvements to them. We have shown
that for the purpose of circuit simulation, a combination
of Markowitz’ algorithm with symmetric ordering meth-
ods yields pivot orderings significantly better than those
obtained from Markowitz’ algorithm alone, in some cases
at virtually no extra computational cost and that that com-
bination is capable of accelerating circuit simulation sig-
nificantly.

We could not make a final decision on what ordering
algorithm is best. That decision would not only depend
on the kind of circuits to be simulated, but also on the
computer architecture and the specific numerical factor-
ization algorithm used and is beyond the scope of this
paper.

However, we think that a further improvement of
the running times of those symmetric methods that are
based on exact local fill counts, for example, through a
combination of multiple elimination with the fill updat-
ing method of WING and HUANG [Wing and Huang,
1975, Vlach and Singhal, 1983], would make them su-
perior to any other local ordering method known today
when combined with Markowitz’ algorithm as described
in [Reißig and Klimpel, 2001] and applied in this paper.

6. ACKNOWLEDGMENT

I thank P. I. Barton (Cambridge, MA), G. Denk
(München), and Uwe Feldmann (München), for their
valuable hints and comments.

7. REFERENCES

[Cavers, 1989] Cavers, I. A. (1989). Using deficiency
measure for tiebreaking the minimum degree algo-
rithm. Technical Report 89-2, Dept. Comp. Sci., The
Univ. Of British Columbia, Vancouver, B. C., Canada
V6T 1W5.

[Chua et al., 1987] Chua, L. O., Desoer, C. A., and
Kuh, E. S. (1987). Linear and Nonlinear Circuits.
McGraw–Hill.

[Chua and Lin, 1975] Chua, L. O. and Lin, P.-M. (1975).
Computer–Aided Analysis of Electronic Circuits.
Prentice–Hall, Englewood Cliffs, NJ.

[Duff et al., 1986] Duff, I. S., Erisman, A. M., and Reid,
J. K. (1986). Direct methods for sparse matrices. Ox-
ford University Press.

[Feldmann et al., 1992] Feldmann, U., Wever, U. A.,
Zheng, Q., Schultz, R., and Wriedt, H. (1992). Algo-
rithms for modern circuit simulation. Archiv für Elek-
tronik und Übertragungstechnik (AEÜ), 46(4):274–
285.

[George and Liu, 1989] George, A. and Liu, J. W.
(1989). The evolution of the minimum degree order-
ing algorithm. SIAM Review, 31(1):1–19.

[Golub and Van Loan, 1993] Golub, G. H. and
Van Loan, C. F. (1993). Matrix Computations.
The John Hopkins Univ. Press, 2 edition.

[Hajj et al., 1981] Hajj, I. N., Yang, P., and Trick, T. N.
(1981). Avoiding zero pivots in the modified nodal
approach. IEEE Transactions on Circuits and Systems,
28(4):271–278.

[Lustig et al., 1992] Lustig, I. J., Marsten, R. E., and
Shanno, D. F. (1992). The interaction of algorithms
and architectures for interior point methods. In Parda-
los, P. M., editor, Advances in optimization and paral-
lel computing, pages 190–204. North-Holland.

[Markowitz, 1957] Markowitz, H. M. (1957). The elim-
ination form of the inverse and its application to linear
programming. Management Science, 3:255–269.

[Mészáros, 1998] Mészáros, C. (1998). Ordering heuris-
tics in interior point LP methods. In Giannessi, F.,
Komlósi, S., and Rapcśak, T., editors, New trends in
mathematical programming, pages 203–221. Kluwer
Acad. Publ.

[Nagel, 1975] Nagel, L. W. (1975). SPICE 2: A com-
puter program to simulate semiconductor circuits.
Technical Report ERL-M520, Univ. of Calif. Berke-
ley, Electronic Res. Lab., Berkeley, CA.

[Ng and Raghavan, 1999] Ng, E. G. and Raghavan, P.
(1999). Performance of greedy ordering heuristics for
sparse Cholesky factorization. SIAM Journal on Ma-
trix Analysis and Applications, 20(4):902–914.

[Parter, 1961] Parter, S. V. (1961). The use of linear
graphs in Gauss elimination. SIAM Review, 3:119–
130.

[Reißig, 2001] Reißig, G. (2001). On methods for order-
ing sparse matrices in circuit simulation. In Proc. 2001
IEEE Int. Symp. on Circuits and Systems (ISCAS),
Sydney, Australia, May 6-9, volume 5, pages 315–318.

[Reißig and Klimpel, 2001] Reißig, G. and Klimpel, T.
(2001). Verfahren zum computergestützten Vorher-
sagen des Verhaltens eines durch Differentialgleichun-
gen beschreibbaren Systems. Patent DE 101 03 793
A 1. (“Method for computer-aided prediction of the
behavior of a system described by differential equa-
tions”, in German).

[Rothberg and Eisenstat, 1998] Rothberg, E. and Eisen-
stat, S. C. (1998). Node selection strategies for
bottom-up sparse matrix ordering. SIAM Journal on
Matrix Analysis and Applications, 19(3):682–695.

[Tan, 1986] Tan, G.-L. (1986). An algorithms for avoid-
ing zero pivots in the modified nodal approach. IEEE
Transactions on Circuits and Systems, 33(4):431–434.

[Vlach and Singhal, 1983] Vlach, J. and Singhal, K.
(1983). Computer methods for circuit analysis and
design. Van Nostrand Rheinhold.

[Wing and Huang, 1975] Wing, O. and Huang, J. (1975).
SCAP - a sparse matrix circuit analysis program. In
Proc. 1975 IEEE Int. Symp. on Circuits and Systems
(ISCAS), pages 213–215.

[Yannakakis, 1981] Yannakakis, M. (1981). Computing
the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79.

8. AUTHOR BIOGRAPHIES

GUNTHER REIßIG received his Dipl.-Ing. (EE), Dipl.-
Math. and Dr.-Ing. (EE) degrees from Technische Uni-
versität Dresden, Dresden, Germany, in 1991, 1995, and
1998, respectively. He was awarded the “Förderpreis”
of the Information Technology Society, Germany, for
his Dr.-Ing. thesis. From 1998 to 2000, he was with
SIEMENS AG (München, Germany) and Infineon Tech-
nologies (München, Germany), where he contributed to
the improvement of the diagnosis, VHDL, and sparse
matrix capabilities of the circuit simulator TITAN. From
2000 to 2002, he was with the Department of Chemical
Engineering of the Massachusetts Institute of Technol-
ogy as a Postdoctoral Research Fellow. He is now with
the chair of systems theory at the Department of Elec-
trical Engineering of the Otto-von-Guericke Universität
Magdeburg (Magdeburg, Germany) as an assistant. At
present, he is particularly interested in the structural ap-
proach to systems analysis as well as discrete-continuous
systems.

