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Abstract— We present necessary and sufficient conditions for
reachable sets of discrete-time systemsx(k+1) = F (k, x(k))
to be convex. In particular, the set of states reachable at a given
time from a sufficiently small ellipsoid of initial states is always
convex if F is smooth enough, and we provide explicit bounds
on the size of those ellipsoids. Our results imply that outer
discrete approximations with approximation depth exceeding
1 can be readily computed up to arbitrary precision. A
further potential application is outer polyhedral approximation
of reachable sets, which becomes almost universally applicable
if those sets are known to be convex.
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I. INTRODUCTION

Reachability problems play a central part in a wide range
of control related problems, including safety and liveness
verification, diagnosis, controller synthesis, optimization and
others [1]–[7]. In these contexts, the following reachability
problem always occurs, in one form or another: Given an
autonomous ordinary differential equation

ẋ = f(x) (1)

with smooth flowϕ : U ⊆ R×Rn → Rn, subsetsΩ1,Ω2 ⊆
Rn of states, and someT ∈ R with {T}×Ω1 ⊆ U , determine
whether

∅ 6= ϕ(T,Ω1) ∩ Ω2, (2)

that is, whether there is a state inΩ2 that is reachable from
an initial state inΩ1 at timeT . (SeeFig. 1.) Condition(2)
can often be efficiently verified up to arbitrary precision if
both the target setΩ2 and the reachable setϕ(T,Ω1) are
convex [8].

Therefore, the question arises under what conditions the
reachable setϕ(T,Ω1) is convex. As there are other ap-
plications as well in which one can take advantage of the
convexity of reachable sets, the question of when those sets
actually are convex has been studied for continuous-time
systems

ẋ = f(t, x) (3)

in recent years, e.g. [8]–[18]. However, despite the fact that
the analogous problem for discrete-time systems

x(k + 1) = F (k, x(k)) (4)

has analogous applications, it does not seem to have drawn
any attention so far.
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In this paper, we present necessary and sufficient condi-
tions for reachable sets of the discrete-time system(4) to
be convex. First, we would like to discuss two potential
applications of our results briefly:

Outer polyhedral approximation of reachable sets. The
method of outer polyhedral approximation of reachable
sets is known to apply to nonlinear continuous-time
systems with inputs and disturbances under some
restrictions on the nonlinearity, e.g. [19]–[21]. The
point we would like to make here is that the method
actually applies to any discrete-time system(4)
provided that the right hand side of(4) is sufficiently
smooth and the reachable set is known to be convex.
In particular, our results in SectionIII show that the
method of outer polyhedral approximation of reachable
sets applies to any system(4) with twice continuously
differentiable right hand side if the ellipsoid of initial
states is sufficiently small.
In the setting of the present paper, and under con-
ditions that ensure convexity of the reachable set
ϕ(k, k0, B̄(x0, r)), it is extremely easy to obtain outer
polyhedral approximations. (SeeFig. 2. B̄(x0, r)
denotes an ellipsoid, i.e., a closed ball of radiusr
centered atx0 with respect to some inner product, and
ϕ, the general solution of(4). See SectionII for notation
and terminology.) All it takes is to solve(4) with w
different initial valuesx from the boundary∂B(x0, r)
of B̄(x0, r) in a first step to obtainw points on the
boundary of the reachable set. In a second step, one
solvesw adjoint problems

z(k + 1) = (D2F (k, ϕ(k, k0, x)∗)−1z(k), (5a)

z(k0) = v0 (5b)

with v0 being an outside normal tōB(x0, r) at x ∈
∂B(x0, r). (Here,D2F denotes the partial derivative
of the mapF with respect to its second argument, and
A∗, the adjoint to the linear mapA with respect to
the inner product chosen; see SectionII .) By well-
known properties of the adjoint equation(5a), that
second step yieldsw outside normals to the reachable
set at thew boundary points computed in the first step.
Consequently, approximating a convex reachable set by
means ofw supporting hyperplanes requires the solution
of just 2w discrete-time systems inRn.

Discrete abstractions w. approximation depth exceeding 1.
As an approach to analysis, synthesis and verification
of systems, it has been proposed to investigate discrete
abstractions of continuous- and discrete-time systems
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Fig. 1. Illustration of reachability problem. (See SectionI.)

rather than the dynamics of these systems itself, e.g.
[1]–[4]. A discrete abstraction may be seen as a
finite, in general non-deterministic automaton. In the
simplest case, states of that automaton correspond to
members (“cells”) of a finite covering of the state
space of the system. In that automaton, there is a
transition from one state to another if and only if the
cell corresponding to the second state is reachable from
the cell corresponding to the first state via solutions
of the system to be abstracted. The latter condition
is exactly the reachability condition(2) if the system
to be abstracted is the autonomous ODE(1). The
same strategy applies to both continuous- and discrete-
times systems with control inputs,̇x = f(x, u) or
x(k + 1) = f(x(k), u(k)), if the number of admissible
control signals (in the continuous-time case: on some
interval) is finite. In fact, these two cases reduce to
abstractions of a finite number of nonautonomous
systems(3) and(4), respectively.
We say the discrete abstraction described above is of
approximation depth1, since we have looked back just
one step in time when constructing it. A problem
with that simple kind of abstraction is that it may
very well happen that there is no controller meeting
the specification for the automaton. Roughly speaking,
there are just too many transitions in it or, in other
words, abstractions of approximation depth1 often
represent behaviors that are too rich.
It has been proposed to use discrete abstractions of
approximation depthl > 1 that are constructed by
looking backl > 1 steps in time in order to “shrink” the
behavior represented by the automaton [22], [23]. Just
as with abstractions of approximation depth1, abstrac-
tions of arbitrary approximation depthl of systems with
control inputs reduce to abstractions of approximation
depth l of a finite number of nonautonomous systems
(3) and(4), respectively.
If an abstraction with approximation depthl of the
discrete-time system(4) is to be computed, transitions
in a finite automaton need to be determined, where the
following reachability condition is to be verified instead

ϕ(k, k0, B̄(x0, r))

B̄(x0, r)

x

v0

Fig. 2. Outer polyhedral approximation of convex reachable sets. (See
SectionI.)

of (2):

∅ 6=
l+1⋂
i=1

ϕ(k0 + l, k0 + i− 1,Ωi). (6)

Here,k0 is a given initial time and(Ωi)i∈{1,...,l+1}, a
given family of “cells” Ωi ⊆ Rn, andϕ, the general
solution of (4).
It should be obvious that neither(2) nor (6) can be de-
cided precisely. Instead, the simpler condition(2) may
be verified approximately, up to arbitrary precision (de-
fined appropriately), where computational complexity
grows dramatically with both precision and dimension
of the state space [3], [24]–[27]. Methods to approx-
imate discrete abstractions with approximation depth
exceeding1 have been presented for rather restricted
classes of systems only, e.g. [28].
The crucial observation is the following: If the cellsΩi

are sublevel sets of mapsgi : Rn → R,

Ωi = {x ∈ Rn | gi(x) ≤ 0 } ,
then the reachable setsϕ(k0 + l, k0 + i − 1,Ωi) are
sublevel sets of mapshi,

hi(x) = gi

(
ϕ(k0 + l, k0 + i− 1, ·)−1(x)

)
, (7)

provided the inverse in(7) exists. Thus, the reachability
condition (6) is fulfilled if and only if the system

h1(x) ≤ 0, (8a)
...

hl+1(x) ≤ 0 (8b)

has a solution. Now, if the reachable setsϕ(k0 +
l, k0 + i − 1,Ωi) can be guaranteed to be convex,(8)
is often a simple convex optimization problem. Hence,
as convexity of reachable sets can be guaranteed by the
results of sectionIII , discrete abstractions with arbitrary
approximation depth can be readily computed up to
arbitrary precision.
We would like to emphasize again that the above setting
actually covers discrete-time systems with controls via
the dependence onk of the right hand side of(4)
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and sampled versions of continuous-time systems with
controls if the set of admissible controls on the sampling
intervals is finite.

The remaining of this paper is structured as follows.
After having introduced basic terminology in SectionII ,
we establish convexity conditions for reachable sets of the
discrete-time system(4) in Section III . The particularly
important case of a discrete-time version of a continuous-
time system(3) is separately investigated. It turns out that the
set of states reachable at given time from a sufficiently small
ellipsoid of initial states is always convex, and we provide
explicit bounds on the size of those ellipsoids in terms of
properties of the right hand sideF of (4). In SectionIV,
we demonstrate the application of our convexity criteria to
a discrete-time version of the pendulum equations. It turns
out that the balls that lead to convex reachable sets are large
enough to be used in actual computations to be performed
when the two methods discussed in the present section are
applied.

Due to limitation in space, the proofs of our results can
only be published with an extended (journal) version of this
manuscript.

II. PRELIMINARIES

R and Z denote the sets of real numbers and integers,
respectively. 〈·|·〉 denotes some inner product inRn, ‖ · ‖
is the norm w.r.t.〈·|·〉, andB(x, r) and B̄(x, r) denote the
open and closed, respectively, ball of radiusr centered atx.
∂M denotes the boundary ofM ⊆ Rn. Two vectorsx and
y are perpendicular,x ⊥ y, if 〈x|y〉 = 0.

The domain of a mapf is denoted bydom f , id denotes
the identity map,f−1 is used for the inverse off as well
as for preimages. The space of linear mapsX → Y is
denoted byL(X,Y ). L∗ andLT denote the adjoint and the
transpose, respectively, of the linear mapL ∈ L(Rn,Rn)
with respect to〈·|·〉, andkerL denotes the nullspace ofL.
We defineL0 := id, and for regularL, L−k :=

(
L−1

)k
. If

L is k-linear, we setLhk := L(h, . . . , h).
Let L ∈ L(Rn,Rn). By α−(L) and α+(L) we denote

the square root of the minimum and maximum, respectively,
eigenvalues ofL∗L, and byµ−(L) andµ+(L) the minimum
and maximum, respectively, eigenvalues of the self-adjoint
part 1

2 (L+ L∗) of L.
Djf denotes the derivative of orderj of f , andDj

i f , the
partial derivative of orderj with respect to theith argument
of f , andDif := D1

i f , f ′ := Df := D1f , andf ′′ := D2f .
Ck denotes the class ofk times continuously differentiable
maps.

Let F : U ⊆ Z × Rn → Rn. In complete analogy to the
continuous-time case,ϕ : V → Rn is called thegeneral so-
lution of (4) if V ⊆ { (τ, k, x) ∈ Z× Z× Rn | (k, x) ∈ U }
and for all(k0, x0) ∈ U , ϕ(·, k0, x0) is the maximal solution
of the initial value problem composed of(4) and the initial
condition x(k0) = x0. (k, x) 7→ ϕ(k, 0, x) is called the
flow of (4) if ϕ is the general solution of(4) and (4) is
autonomous.

We assume throughout this paper that the right hand side
F : U ⊆ Z×Rn → Rn of (4) is of classC2. Obviously then,
the general solutionϕ of (4) is of classC2 as well, and the
mapD3ϕ(·, k0, x) is a solution of the variational equation to
(4), i.e., it is a matrix solution to the initial value problem

Z(m+ 1) = D2F (m,ϕ(m, k0, x))Z(m), (9a)

Z(k0) = id . (9b)

Consider now the linear special case

x(k + 1) = A(k)x(k) + b(k) (10)

of (4) and the corresponding homogeneous system

x(k + 1) = A(k)x(k). (11)

The transition matrixΦ of (11) is defined by the requirement
that Φ(·, k0) is the matrix solution of the initial value
problem consisting of the homogeneous system(11) and the
initial condition x(k0) = id. Hence,Φ(k, k0) = A(k −
1)A(k−2) · · ·A(k0) wheneverk ≥ k0. The general solution
ϕ of (10) is given by the formula

ϕ(k, k0, x0) = Φ(k, k0)x0 +
k−1∑
τ=k0

Φ(k, τ + 1)b(τ) (12)

for all k, k0 ∈ Z, k ≥ k0.

III. MAIN RESULTS

In this section, we present necessary and sufficient con-
ditions for the convexity of a set of states reachable at
some finite time from some ellipsoid of initial states through
solutions of the discrete-time system(4), whereF : U ⊆
Z × Rn → Rn is such that for eachk ∈ Z, F (k, ·)
is a C2-diffeomorphism between two open subsets ofRn.
Throughout this section,ϕ denotes the general solution of
(4) unless stated otherwise.

Our results are based on the following convexity criterion
from [16], [18]:

III.1 Theorem. Let Φ: U → V be a C2-diffeomorphism
between open setsU, V ⊆ Rn and x0 ∈ U and r > 0 such
that B̄(x0, r) ⊆ U . ThenΦ(B̄(x0, r)) is convex if and only
if 〈

x− x0

∣∣Φ′(x)−1Φ′′(x)h2
〉 ≤ 1 (13)

holds for all x ∈ ∂B(x0, r) and all h ⊥ (x − x0) with
‖h‖ = 1.

Note that, in contrast to related results in [29]–[31], the
conditions in TheoremIII.1 are to be checked for boundary
pointsx of B̄(x0, r) and tangent vectorsh only.

Our first result below gives a criterion for the reachable set
ϕ(k, k0, B̄(x0, r)) of (4) to be convex. Its advantage over a
direct application of TheoremIII.1 to theC2-diffeomorphism
ϕ(k, k0, ·) is that the second derivative of that diffeomor-
phism does not appear in the key condition(14). Hence, in
order to estimate the left hand side of(14) for a particular
system(4), it suffices to study the variational equation to(4).
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III.2 Theorem. Let x0 ∈ Rn, r > 0 and k0, k ∈ Z and
assume thatk ≥ k0 and {k} × {k0} × B̄(x0, r) ⊆ domϕ.
Then the reachable setϕ(k, k0, B̄(x0, r)) is convex if and
only if

k−1∑
τ=k0

〈x− x0 |D3ϕ(τ, k0, x)−1D2F (τ, ϕ(τ, k0, x))−1·

·D2
2F (τ, ϕ(τ, k0, x))(D3ϕ(τ, k0, x)h)2〉 ≤ 1 (14)

for all x ∈ ∂B(x0, r) and all h ⊥ (x− x0) with ‖h‖ = 1.

The next two results are sufficient conditions for the
reachable set to be convex. Their main advantage over the
previous TheoremIII.2 is that the bounds on the radius they
establish can be determined directly from properties of the
right hand side of(4).

III.3 Theorem. Let U , F , x0, r, k0 and k as in Theorem
III.2 and assume that the constantsd3, σ−, σ+ ∈ R fulfill

σ− ≤ α− (D2F (τ, x)) ≤ α+ (D2F (τ, x)) ≤ σ+, (15)

d3 ≥ ‖D2F (τ, x)−1D2
2F (τ, x)‖ (16)

for all (τ, x) ∈ U . Then the reachable setϕ(k, k0, B̄(x0, r))
is convex ifrd3K(σ2

+/σ−) ≤ 1, where

K(β) =

{
k − k0, if β = 1,
βk−k0−1

β−1 , otherwise.
(17)

III.4 Corollary. Let U , F , x0, r, k0 and k be as in
TheoremIII.2, K as in (17), and assume that the constants
d2, σ−, σ+ ∈ R fulfill (15) and

d2 ≥ ‖D2
2F (τ, x)‖

for all (τ, x) ∈ U . Then the reachable setϕ(k, k0, B̄(x0, r))
is convex ifrd2K(σ2

+/σ−) ≤ σ−.

A particularly important case of(4) is that of a time-
discrete version of a continuous-time system(3), where
f : U ⊆ R × Rn → Rn. In that case, the right hand sideF
of (4) is given by

F (k, x) := ϕ((k − k0)T + t0, k0T + t0, x) (18)

for someT > 0 andt0 ∈ R, whereϕ is the general solution
of (3) and{(k − k0)T + t0} × {k0T + t0} × {x} ⊆ domϕ.
The requirement thatF (k, ·) be a diffeomorphism of class
C2 is then fulfilled wheneverU is open and the right hand
sidef of (3) is of classC2. Moreover, it follows from [18]
that the conditions in TheoremIII.3 can be easily verified
by inspection of the right hand sidef of (3):

III.5 Proposition. Let U ⊆ R × Rn be open and the right
hand sidef of (3) be of classC2. Let further x0 ∈ Rn,
r > 0 and t0, t ∈ R be such thatt ≥ t0 and {t} × {t0} ×
B̄(x0, r) ⊆ domϕ, whereϕ is the general solution of(3).
Finally, assume that the constantsc2, λ−, λ+ ∈ R fulfill

λ− ≤ µ− (D2f(τ, x)) ≤ µ+ (D2f(τ, x)) ≤ λ+, (19)

c2 ≥ ‖D2
2f(τ, x)‖ (20)

for all (τ, x) ∈ U . Then

‖D3ϕ(t, t0, x)‖ ≤ eλ+(t−t0), (21)

‖D3ϕ(t, t0, x)−1‖ ≤ e−λ−(t−t0), (22)

‖D3ϕ(t, t0, x)−1D2
3ϕ(t, t0, x)‖ ≤ c2K̃(2λ+ − λ−),

for all x ∈ B̄(x0, r), where

K̃(β) =

{
t− t0, if β = 0,
(exp(β(t− t0))− 1) /β, otherwise.

III.6 Corollary. Let U , f , x0, r, t0, t, c2, K̃, λ− and λ+

as in PropositionIII.5, let T = t− t0, k ≥ k0 and the right
hand sideF of (4) be given by(18), and letϕ be the general
solution of(4).
Then the reachable setϕ(k, k0, B̄(x0, r)) is convex if
rc2K̃((k − k0)(2λ+ − λ−)) ≤ 1.

We would like to comment on how to verify the hy-
potheses in the preceding results if the ballB̄(x0, r) of
initial values is an ellipsoid rather than an Euclidean ball,
or equivalently, if the inner product〈·|·〉 is different from
the Euclidean inner product(·|·) given by

(x|y) =
∑n

i=1
xiyi. (23)

Obviously, condition(15) reduces to a bound on the eigenval-
ues ofD2F (τ, x)∗D2F (τ, x), and condition(19), to a bound
on the eigenvalues of the self-adjoint part1

2 (D2f(τ, x) +
D2f(τ, x)∗) of D2f(τ, x). If 〈·|·〉 is Euclidean,L∗ = LT

for all L ∈ L(Rn,Rn), andα±(L) are the minimum and
maximum, respectively, singular values ofL. If 〈·|·〉 is not
Euclidean, there is a symmetric positive definite matrixQ
such that〈x|y〉 = (x|Qy), from which L∗ = Q−1LTQ
follows for all L ∈ L(Rn,Rn), so that conditions(15) and
(19) can be readily verified.

IV. EXAMPLE

In this section, we demonstrate the application of our
results to a discrete-time version of the pendulum equations.
To this end, we define the right hand sideF of (4) by

F (k, x) := ψ(k/4, x), (24)

where ψ : R × R2 → R2 is the flow of the pendulum
equations

ẋ1 = x2, (25a)

ẋ2 = −ω2 sin(x1)− 2γx2. (25b)

The investigation of the convexity of reachable sets of more
general systems, such as a cart-pole system with piecewise
constant control, can be reduced to the autonomous system
(25) [16].

For the sake of simplicity, we restrict ourselves to the case
of the Euclidean inner product inRn defined in(23) in this
section.

We first demonstrate the application of Cor.III.6:
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TABLE I

BOUNDS ON THE RADIUS OF THE BALLΩ THAT ENSURES CONVEXITY

OF THE REACHABLE SETϕ(k, Ω) OVER k. (ROUNDED TO TWO DECIMAL

PLACES.)

k 1 2 3 4
R (Cor. IV.1) 2.7 .86 .35 .16
R (Th. IV.2) 3.4 1.1 .45 .20
R (numerical) 3.9 1.8 .98 .52

IV.1 Corollary. Let ϕ be the flow of(4), the right hand side
F of (4) be given by(24), and letk > 0 and d1 andR be
given by

d1 = −γ + 3
√
γ2 + (1 + ω2)2/4, (26)

R =
d1

ω2(exp(kd1/4)− 1)
. (27)

Then the image of any ball with radius not exceedingR
under the mapϕ(k, ·) is convex.

The next result, which we obtain by applying Theorem
III.3 and PropositionIII.5, improves the bound(27) of
Corollary IV.1. TheoremIV.2 also improves a result in [18]
as it yields a valid bound on the radius for everyk > 0. In
contrast, with the tools developed in [18] we had obtained a
related result on a finite time interval only.

IV.2 Theorem. Let ϕ be the flow of(4), the right hand side
F of (4) be given by(24), let k > 0, d1 be given by(26),
setρ =

√
ω2 + γ2 and

R =
6ωρ(ed1/4 − 1)

(1 + (ω + γ)2)3/2 (ekd1/4 − 1)
·

· 1
sinh(ρ/4)(cosh(ρ/2) + 5− 10 exp(−ω))

, (28)

and assume0 ≤ γ ≤ ω and 1 ≤ ω ≤ π. Then the image of
any ball with radius not exceedingR under the mapϕ(k, ·)
is convex.

Tab. I shows the bounds obtained from CorollaryIV.1 and
TheoremIV.2 in comparison to a bound obtained numerically
for the undamped mathematical pendulum (ω = 1, γ = 0).
The figures show that the balls that lead to convex reachable
sets are large enough to be used in actual computations to
be performed when the two methods discussed in SectionI
are applied.

We would like to emphasize that the results from this
section are of a global type, i.e., convexity of reachable sets
ϕ(k, B̄(x0, r)) for arbitraryx0 ∈ R2 is guaranteed, provided
that r ≤ R.

V. CONCLUSIONS

We have obtained necessary and sufficient conditions for
reachable sets of discrete-time systems(4) to be convex.
Our results imply that outer discrete approximations with
arbitrary approximation depth can be readily computed up
to arbitrary precision. A further potential application ofour
results is outer polyhedral approximation of reachable sets,

which becomes almost universally applicable if the reachable
set is known to be convex.

Extension of our results to infinite dimensions, to the
case of C1,1 smoothness (C1 with Lipschitz-continuous
derivative), and to arbitrary sublevel sets of initial states
seems to be possible with the help of the results of [17], [18].
An open question is how to relax our standing assumption
that F (k, ·) be a diffeomorphism. In addition, the two
applications of our results presented in SectionI require
further investigation, e.g. regarding approximation error,
the possibility to obtain non-polyhedral approximations,and
computational efficiency.
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