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Convexity of reachable sets of

Gunther

Abstract— We present necessary and sufficient conditions for
reachable sets of discrete-time systems(k+1) = F(k, z(k))
to be convex. In particular, the set of states reachable at a give
time from a sufficiently small ellipsoid of initial states is always
convex if F' is smooth enough, and we provide explicit bounds
on the size of those ellipsoids. Our results imply that outer

nonlinear discrete-time systems

Reilig

In this paper, we present necessary and sufficient condi-
tions for reachable sets of the discrete-time sys{dnto
be convex. First, we would like to discuss two potential
applications of our results briefly:

Outer polyhedral approximation of reachable sets. The

discrete approximations with approximation depth exceeding
1 can be readily computed up to arbitrary precision. A
further potential application is outer polyhedral approximation

of reachable sets, which becomes almost universally applicable
if those sets are known to be convex.

Key Words. Reachability analysis, nonlinear difference
equations, discrete-time systems.

I. INTRODUCTION

Reachability problems play a central part in a wide range
of control related problems, including safety and liveness
verification, diagnosis, controller synthesis, optimiaatand
others [1]-[7]. In these contexts, the following reachiapil
problem always occurs, in one form or another: Given an
autonomous ordinary differential equation

&= f(x) 1)

with smooth flowp: U C R x R™ — R", subset£2,, 2, C
R™ of states, and sonmE € R with {T'} xQ; C U, determine
whether

(Z) 7& SD(T> Ql) N 927 (2)

that is, whether there is a state (ly that is reachable from
an initial state in(2; at timeT'. (SeeFig. 1) Condition(2)
can often be efficiently verified up to arbitrary precision if
both the target sef); and the reachable set(T, ;) are
convex [8].

Therefore, the question arises under what conditions the
reachable sefp(T,;) is convex. As there are other ap-
plications as well in which one can take advantage of the
convexity of reachable sets, the question of when those sets
actually are convex has been studied for continuous-time
systems

&= f(t,x) 3)
in recent years, e.g. [8]-[18]. However, despite the faat th
the analogous problem for discrete-time systems

x(k+1) = F(k,x(k)) 4

has analogous applications, it does not seem to have drawn
any attention so far.

method of outer polyhedral approximation of reachable
sets is known to apply to nonlinear continuous-time
systems with inputs and disturbances under some
restrictions on the nonlinearity, e.g. [19]-[21]. The
point we would like to make here is that the method
actually applies to any discrete-time syste(d)
provided that the right hand side ¢4) is sufficiently
smooth and the reachable set is known to be convex.
In particular, our results in Sectiodl show that the
method of outer polyhedral approximation of reachable
sets applies to any syste() with twice continuously
differentiable right hand side if the ellipsoid of initial
states is sufficiently small.

In the setting of the present paper, and under con-
ditions that ensure convexity of the reachable set
o(k, ko, B(zo,7)), it is extremely easy to obtain outer
polyhedral approximations. (SeEig. 2  B(xo,7)
denotes an ellipsoid, i.e., a closed ball of radius
centered atry with respect to some inner product, and
, the general solution q#). See Sectioll for notation

and terminology.) All it takes is to solvé4) with w
different initial valuesz from the boundan®B(z, r)

of B(wxg,r) in a first step to obtainy points on the
boundary of the reachable set. In a second step, one
solvesw adjoint problems

2(k +1) = (D2F (k,p(k, ko, )") " 2 (k),
Z(ko) = Vo

with vy being an outside normal t&(xzg,r) at z €
0B(zg,r). (Here, DoF denotes the partial derivative
of the mapF’ with respect to its second argument, and
A*, the adjoint to the linear mapl with respect to
the inner product chosen; see Sectib) By well-
known properties of the adjoint equatiofda) that
second step yields outside normals to the reachable
set at thew boundary points computed in the first step.
Consequently, approximating a convex reachable set by
means ofw supporting hyperplanes requires the solution
of just 2w discrete-time systems iR".

(5a)
(5b)

Discrete abstractions w. approximation depth exceeding 1.
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As an approach to analysis, synthesis and verification
of systems, it has been proposed to investigate discrete
abstractions of continuous- and discrete-time systems
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Fig. 1.

lllustration of reachability problem. (See Section

rather than the dynamics of these systems itself, e.g.
[1]-[4]. A discrete abstraction may be seen as a
finite, in general non-deterministic automaton. In the
simplest case, states of that automaton correspond to
members (“cells”) of a finite covering of the state
space of the system. In that automaton, there is a
transition from one state to another if and only if the
cell corresponding to the second state is reachable from
the cell corresponding to the first state via solutions
of the system to be abstracted. The latter condition
is exactly the reachability conditio(®) if the system

to be abstracted is the autonomous OQB. The
same strategy applies to both continuous- and discrete-
times systems with control inputsi = f(x,u) or
x(k+1) = f(x(k),u(k)), if the number of admissible
control signals (in the continuous-time case: on some
interval) is finite. In fact, these two cases reduce to
abstractions of a finite number of nonautonomous
systemg(3) and (4), respectively.

We say the discrete abstraction described above is of
approximation depth, since we have looked back just
one step in time when constructing it. A problem
with that simple kind of abstraction is that it may
very well happen that there is no controller meeting
the specification for the automaton. Roughly speaking,
there are just too many transitions in it or, in other
words, abstractions of approximation depthoften
represent behaviors that are too rich.

It has been proposed to use discrete abstractions of
approximation depthl > 1 that are constructed by
looking backl > 1 steps in time in order to “shrink” the
behavior represented by the automaton [22], [23]. Just
as with abstractions of approximation degthabstrac-
tions of arbitrary approximation deptlof systems with
control inputs reduce to abstractions of approximation
depth!/ of a finite number of nonautonomous systems
(3) and (4), respectively.

If an abstraction with approximation depthof the
discrete-time systerfd) is to be computed, transitions
in a finite automaton need to be determined, where the
following reachability condition is to be verified instead

Fig. 2.
Sectionl.)

Outer polyhedral approximation of convex reachalalts.s (See

of (2):

I+1
0 # ()olko + 1 ko +i—1,).

i=1

(6)

Here, ko is a given initial time and€2;);c(;  ;4q;. @
given family of “cells” ; C R™, and ¢, the general
solution of (4).

It should be obvious that neithé?) nor (6) can be de-
cided precisely. Instead, the simpler conditi@) may

be verified approximately, up to arbitrary precision (de-
fined appropriately), where computational complexity
grows dramatically with both precision and dimension
of the state space [3], [24]-[27]. Methods to approx-
imate discrete abstractions with approximation depth
exceedingl have been presented for rather restricted
classes of systems only, e.g. [28].

The crucial observation is the following: If the celly

are sublevel sets of maps: R” — R,

Qi ={zecR"|gi(zx) <0},

then the reachable sets(ky + I, ko + ¢ — 1,§2;) are
sublevel sets of maphs;,

hi(z) = gi (p(ko + L ko +i—1,)7(z)), (7)

provided the inverse ifi7) exists. Thus, the reachability
condition (6) is fulfilled if and only if the system

hi(z) <0, (8a)

hiyi(z) <0 (8b)

has a solution. Now, if the reachable seték, +

I,ko +i—1,9;) can be guaranteed to be convég)

is often a simple convex optimization problem. Hence,
as convexity of reachable sets can be guaranteed by the
results of sectionll, discrete abstractions with arbitrary
approximation depth can be readily computed up to
arbitrary precision.

We would like to emphasize again that the above setting
actually covers discrete-time systems with controls via
the dependence ok of the right hand side of4)



and sampled versions of continuous-time systems with We assume throughout this paper that the right hand side
controls if the set of admissible controls on the sampling”: U C Z xR" — R" of (4) is of classC?. Obviously then,
intervals is finite. the general solutior of (4) is of classC? as well, and the

The remaining of this paper is structured as followsMap Ds (-, ko, ) is & solution of the variational equation to
we estab!ish convexity c_:onditions for reachable sets of the Z(m + 1) = DoF(m, (m, ko, z)) Z(m), (9a)
discrete-time systen{4) in Sectionlll. The particularly . b
important case of a discrete-time version of a continuous- Z(ko) = id. (9b)
time systen(3) is separately investigated. It turns outthatthe - consider now the linear special case
set of states reachable at given time from a sufficiently kmal
ellipsoid of initial states is always convex, and we provide z(k+1) = A(k)z(k) + b(k) (10)
explicit bounds on the size of those ellipsoids in terms
properties of the right hand sidé of (4). In SectionlV,
we demonstrate the application of our convexity criteria to z(k+1) = A(k)x(k). (11)

a discrete-time version of the pendulum equations. It turns - ) ] ] ]

out that the balls that lead to convex reachable sets are |a§ahaetransmon.matrlx<1> of (11)is defined by the requirement
enough to be used in actual computations to be perform&g@t ®(- ko) is the matrix solution of the initial value
when the two methods discussed in the present section &¢oPlem consisting of the homogeneous sys{éd) and the
applied. initial condition x(ko) = id. Hence,®(k, ko) = A(k —

Due to limitation in space, the proofs of our results cart)A(k —2)--- A(ko) whenever: > k. The general solution
only be published with an extended (journal) version of thig ©f (10) is given by the formula
manuscript. k—1

(k. ko, m0) = ®(k, ko)zo + Y (k,7+1)b(r) (12)
II. PRELIMINARIES =k

oéf (4) and the corresponding homogeneous system

R and Z denote the sets of real numbers and integer$or all k, ko € Z, k > k.
respectively. (-|-) denotes some inner product R, || - ||

is the norm w.r.t.(-|-), and B(x,r) and B(z,r) denote the 1. MAIN RESULTS

open and closed, respectively, ball of radiusentered at:. In this section, we present necessary and sufficient con-
OM denotes the boundary dff C R™. Two vectorsz and ditions for the convexity of a set of states reachable at
y are perpendiculary L y, if (z|y) = 0. some finite time from some ellipsoid of initial states thrbug

The domain of a magf is denoted bylom £, id denotes solutions of the discrete-time systed), where F': U C
the identity map,f~! is used for the inverse of as well Z x R®™ — R” is such that for eactk ¢ Z, F(k,)
as for preimages. The space of linear maps— Y is is a C?-diffeomorphism between two open subsetsRSf.
denoted byZ(X,Y). L* and LT denote the adjoint and the Throughout this sectiony denotes the general solution of
transpose, respectively, of the linear mape L£(R",R") (4) unless stated otherwise.

with respect to(-|-), andker L denotes the nullspace df. Our results are based on the following convexity criterion
We defineL? := id, and for regularL, L% := (L*l)k. if from [16], [18]:

i i k.
Lis k-linear, we seLh” := L(h, ..., h). .1 Theorem. Let ®: U — V be a C2-diffeomorphism

Let L € L(R",R"). By a_(L) and ay(L) we denote pepyeen open sefs, VV C R™ and zy € U andr > 0 such
the square root of the minimum and maximum, respectivelynat 3(zo, ) C U. Thend(B(zo,r)) is convex if and only
eigenvalues ol.* L, and byu_ (L) and .y (L) the minimum N

and {naximum, respectively, eigenvalues of the self-atljoin <x _ x0|<1>'(x)_1<1>”(:1c)h2> <1 (13)
part 5(L + L*) of L.

D’ f denotes the derivative of ordgrof f, and D! f, the holds for all z € 0B(xo,r) and all b L (z — zo) with
partial derivative of ordey with respect to theth argument /[l = 1.
of f,andD,f := D}f, f':== Df := D'f, andf" := D*f.
C* denotes the class df times continuously differentiable

maps. pointsz of B(x,r) and tangent vectors only.

Let F: U C Z x R" — R". In complete analogy to the * o first result below gives a criterion for the reachable set

co_ntinuous-ti_me casey: V — R" is called thegeneral so- o(k, ko, B(zo, 7)) of (4) to be convex. Its advantage over a
lution of (4) if V C {(r,k,x) € Zx Z x R" | (k,z) € U}

) \ ) direct application of Theoreril.1 to theC?2-diffeomorphism
and for all (ko, z0) € U, ¢(-, ko, o) is the maximal solution ;. 1. " is that the second derivative of that diffeomor-
of th(_a_initial value problem composed ¢) a.nd the initial phism does not appear in the key conditid#). Hence, in
condition x(ko) = zo. (k,x) — @(k,0,2) is called the ryer to estimate the left hand side (@) for a particular
:ﬁ\tlgr?(zngi)ug ¢ is the general solution of4) and (4) is  gystem(4), it suffices to study the variational equation(&).

Note that, in contrast to related results in [29]—[31], the
conditions in Theorentll.1 are to be checked for boundary
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.2 Theorem. Let zp € R", » > 0 and ko,k € Z and
assume thak > ko and {k} x {ko} x B(xo,r) C dom ¢.

for all (7,z) € U. Then

Then the reachable set(k, ko, B(zo,r)) is convex if and IDsgp(t,to, )| < e+, (21)
only if D3t to, )| < e A-07) (22)
k-1 1 1 IDsep(t, to, 2) " D3t to, )| < cakK (244 — A-),
T§0<x = 0| Dsp(7, ko, &)™ Do F (7, (7 ko, )™ for all = € B(xo,r), where

’ D%F(T, @(Ta kOv‘r))(DSSD(Tv ko, (E)h)2> <1 (14) k(ﬂ) _ {t — to, if B =0,
for all z € OB(z,7) and all h L (z — z0) with ||h] = 1. (exp(B(t — o)) — 1) /B, otherwise

The next two results are sufficient conditions for thgj|.e Corollary. LetU, f, zq, 7, to, t, ¢, f(, A and A\,
reachable set to be convex. Their main advantage over thg in Propositionlll.5, let T' =t — to, k > ko and the right
previous Theorentll.2 is that the bounds on the radius theyhand sideF of (4) be given by(18), and lety be the general

establish can be determined directly from properties of t
right hand side of4).

1.3 Theorem. Let U, F, zq, r, kg and & as in Theorem
Ill.2 and assume that the constamts o_, o, € R fulfill

(15)
(16)

for all (7,2) € U. Then the reachable set(k, ko, B(xo, 1))
is convex ifrd; K (o3 /o_) < 1, where

o_ < a- (DQF(Ta JI)) < a4 (DQF(Tax)) < O+,
ds > | D2 F(r,2) "' D3F (7, 2)|

k—ky, fB=1,
K(B) =14 ) 17
(8) { [’kﬁil‘l . otherwise (7

1.4 Corollary. Let U, F, xg, r, kg and k be as in
Theoremlll.2, K as in(17), and assume that the constant
do,o_,04+ € R fulfill (15)and

dy > | D3F(r,)|

for all (7,2) € U. Then the reachable set(k, ko, B(xo, 1))
is convex ifrdo K (0% Jo_) < o_.

A particularly important case of4) is that of a time-
discrete version of a continuous-time systdB), where
f:U CRxR"™ — R". In that case, the right hand sidé
of (4) is given by

F(k,z):=@((k — ko)T + to, koT + to,z)  (18)

for someT > 0 andty € R, wherey is the general solution
of (3) and{(k — k?o)T + to} X {koT + to} X {.CE} C dom .
The requirement thaf'(k,-) be a diffeomorphism of class
C? is then fulfilled whenevel/ is open and the right hand
side f of (3) is of classC?. Moreover, it follows from [18]
that the conditions in Theorel.3 can be easily verified
by inspection of the right hand sidé of (3):

heolution of (4).
Then the reachable sep(k, ko, B(zo,7)) is convex if
reaK((k —ko)(2A+ —A2)) < 1.

We would like to comment on how to verify the hy-
potheses in the preceding results if the ba&l(xz,,r) of
initial values is an ellipsoid rather than an Euclidean ,ball
or equivalently, if the inner product:|-) is different from
the Euclidean inner produgt|-) given by

(aly) =Y @i

Obviously, conditior(15) reduces to a bound on the eigenval-
ues of Do F (1, 2)* Do F (1, 2), and condition(19), to a bound
on the eigenvalues of the self-adjoint pdtD, f(r,z) +
sDaf (1,2)*) of Dyf(r,x). If (-|-) is Euclidean,L* = L
for all L € L(R™,R™), and a (L) are the minimum and
maximum, respectively, singular values bf If (-|-) is not
Euclidean, there is a symmetric positive definite matgix
such that{z|y) = (z|Qy), from which L* = Q~'LTQ
follows for all L € £L(R"™,R"™), so that conditiong15) and
(19) can be readily verified.

(23)

IV. EXAMPLE

In this section, we demonstrate the application of our
results to a discrete-time version of the pendulum equstion

To this end, we define the right hand sidieof (4) by
F(k,z) :=¢(k/4,x), (24)

where ¢: R x R?2 — R? is the flow of the pendulum
equations

(25a)
(25b)

jjl = T2,

do = —w? sin(zq) — 2vyxa.

The investigation of the convexity of reachable sets of more
general systems, such as a cart-pole system with piecewise
constant control, can be reduced to the autonomous system
(25) [16].

For the sake of simplicity, we restrict ourselves to the case
of the Euclidean inner product iR™ defined in(23) in this
section.

We first demonstrate the application of Colll.6:

I11.5 Proposition. Let U € R x R™ be open and the right
hand sidef of (3) be of classC?. Let furtherz, € R",
r > 0 andty,t € R be such that > ¢, and {t} x {to} x

B(xg,r) C dom g, wherey is the general solution of3).
Finally, assume that the constanig A_, A\, € R fulfill

Ao < H— (DQf(Ta “L)) < M+ (DQf(Ta “L)) < )‘+7
c2 > ||D3f (7, )

(19)
(20)
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TABLE |
BOUNDS ON THE RADIUS OF THE BALL{2 THAT ENSURES CONVEXITY

which becomes almost universally applicable if the reatshab

set is known to be convex.

OF THE REACHABLE SETp(k, ) OVER k. (ROUNDED TO TWO DECIMAL

PLACES.)
k 1 2 3 4
R (Cor.IV1) 27 .86 .35 .16
R (Th.IV.2) 34 11 45 20
R (numerical) 39 1.8 .98 .52

Extension of our results to infinite dimensions, to the
case of C'!' smoothness ({* with Lipschitz-continuous
derivative), and to arbitrary sublevel sets of initial stat
seems to be possible with the help of the results of [17],.[18]
An open question is how to relax our standing assumption
that F'(k,-) be a diffeomorphism.

In addition, the two

applications of our results presented in Sectiomequire

IV.1 Corollary. Let ¢ be the flow of4), the right hand side
F of (4) be given by(24), and letk > 0 andd; and R be
given by

di =~y + 372 + (L +w?)?/4, (26)

h= w?(exp(kdy /4) — 1) @0
Then the image of any ball with radius not exceedifig [2]
under the mapp(k, ) is convex. 3]

The next result, which we obtain by applying Theorem
1.3 and Propositionlll.5, improves the bound27) of
Corollary IV.1. TheoremlV.2 also improves a result in [18]
as it yields a valid bound on the radius for evéry> 0. In
contrast, with the tools developed in [18] we had obtained a
related result on a finite time interval only.

(4]

IV.2 Theorem. Let ¢ be the flow o0{4), the right hand side [6]
I of (4) be given by(24), let k£ > 0, d, be given by(26),
setp = y/w? +~2 and 7]
6wp(ed/* —1
R— w/)(e s ) . [8]
(14 (w+ 7)) (eFh/t — 1)
- . . (28)
sinh(p/4)(cosh(p/2) + 5 — 10 exp(—w))
and assumé® < v < w and1 < w < 7. Then the image of [9]
any ball with radius not exceeding under the mapo(k, -)
is convex. (10]

Tab. I1shows the bounds obtained from Corolldw#/1 and
TheoremlV.2 in comparison to a bound obtained numerically
for the undamped mathematical pendulum= 1, v = 0). [11]
The figures show that the balls that lead to convex reachable
sets are large enough to be used in actual computations to
be performed when the two methods discussed in Settioniz)
are applied.

We would like to emphasize that the results from thi?m
section are of a global type, i.e., convexity of reachabts se
o(k, B(zq,r)) for arbitrary xo € R? is guaranteed, provided [14]
thatr < R.

V. CONCLUSIONS 115

We have obtained necessary and sufficient conditions for
reachable sets of discrete-time syste$ to be convex. [16]
Our results imply that outer discrete approximations with
arbitrary approximation depth can be readily computed up
to arbitrary precision. A further potential application ofir
results is outer polyhedral approximation of reachables,set

further investigation, e.g.
the possibility to obtain non-polyhedral approximatioasgd
computational efficiency.

regarding approximation erro
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