
Abstraction based solution of complex attainability

problems for decomposable continuous plants

Gunther Reißig

Abstract—The focus of the present paper is systems of non-
linear continuous sub-plants that share a common input but are
otherwise coupled only through the specification of a control
problem, possibly including state constraints. Examples include
cart-pole systems and collision avoidance problems involving mul-
tiple vehicles. We propose a method that uses finite state models
for solving highly complex continuous attainability problems.

We first prove that finite state models, also called discrete
abstractions, of the overall plant may be obtained as products
of abstractions of sub-plants. The latter, which we call factors,
may be determined quickly and concurrently. We also modify a
state-of-the-art algorithm for the discrete, auxiliary attainability
problems that arise, to work directly with the set of factors
and prove that the asymptotic computational complexity of the
modified algorithm matches that of the original one. In practice,
the latter will often be much slower since the representation of the
abstraction of the overall plant on a computer is likely to require
an excessive amount of memory. Practicability of our method
is demonstrated by successfully designing discrete controllers
that globally stabilize decomposable nonlinear continuous plants
whose overall finite state models would include millions of states
and billions of transitions. Working with the factors instead,
problem data fit into main memory of a customary personal
computer, and computations take only minutes.

I. INTRODUCTION

In recent years, the idea of using finite state models, also

called discrete abstractions, for solving analysis and synthesis

problems in continuous and hybrid systems has attracted a lot

of interest; see [1], [2] and the references given there. This

approach requires to first determine a sufficiently accurate dis-

crete abstraction and then to solve discrete auxiliary problems

for the latter, in order to obtain provably correct statements for

the original continuous or hybrid system, or alternatively, to

obtain discrete controllers that provably enforce a specification

for the original system. However, suitable finite state models

may be extremely costly to determine, and the auxiliary

discrete problems that arise may also be quite complex, which

is why practicability of the above approach is currently limited

to low-dimensional or otherwise special plant dynamics.

In this paper, we propose a method for solving highly

complex attainability problems, which exploits a nonlinear

continuous plant’s structure by working directly with finite

state models of sub-plants. Specifically, we consider discrete-

time systems

x(k + 1) = G(x(k), u(k)) (1)

The author is with Universität Kassel, Fachbereich 16 - Elektrotech-
nik/Informatik, Regelungs- und Systemtheorie, Wilhelmshöher Allee 73, D-
34121 Kassel, Germany, http://www.reiszig.de/gunther/

whose right hand side G decomposes into p factors that are

coupled through a common input,

G(x, u) = (G1(x1, u), . . . , Gp(xp, u)). (2)

Here, x represents an output signal, x = (x1, . . . , xp) ∈ R
n1×

· · · × R
np , and u is an input signal which is usually assumed

to take its values in some finite set. The method we propose

also applies if the system (1) arises from a continuous-time

system

ẋ = F (x, u), (3)

F (x, v) = (F1(x1, u), . . . , Fp(xp, u)) (4)

under sampling, in which case the right hand side G is not

explicitly given.

The attainability problems we consider are defined by an

initial set X0, a target set X1, and a set X2 of admissible

states. We seek to design a controller that forces the state x of

(1) into the target set X1 within finite time, from everywhere in

the initial set X0, and also guarantees that the state constraint

x ∈ X2 is satisfied. Hence, in addition to the coupling through

a common input u, the sub-systems

xi(k + 1) = Gi(xi(k), u(k)) (5)

are coupled through the specification of a control problem.

Note that, in contrast to the right hand side G of (1), the

sets X0, X1 and X2 are not assumed to possess any product

structure.

To fix ideas, we next explain the approach we follow by

means of an example. Consider a system of p − 1 pendula

mounted on a common cart, p ≥ 2. See Fig. 1(a). Here, xp,1

denotes the position of the cart, xi,1 is the angle between the

ith pendulum and the downward vertical, and the acceleration

u of the cart is considered a control. The motion of the ith
pendulum may be described by

ẋi,1 = xi,2, (6a)

ẋi,2 = −ω2
i sin(xi,1) − u ω2

i cos(xi,1) − 2γixi,2, (6b)

where ωi and γi are parameters, and the motion of the cart,

by

ẋp,1 = xp,2, (7a)

ẋp,2 = u. (7b)

Hence, the right hand side of the system (7)-(6) matches the

decomposition (4) with xi = (xi,1, xi,2).

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 5911

x1,1
x2,1

xp−1,1

u
xp,1

−→

cart-pole system

supervisor

discrete

actuator generator

low-level

controller

u

x

Ω

(a) (b)

Figure 1. (a) Cart-pole system which decomposes into p sub-systems. The pendula are swung up and the cart is moved to the origin by the hybrid control
system (b) [1].

Assume that the pendula should be swung up and the cart

should be moved to the origin by means of the hybrid control

system shown in Fig. 1(b). Clearly, it is straightforward

to design a low-level controller that locally stabilizes the

target point (π, 0, π, 0, . . . , π, 0, 0, 0) ∈ R
2p, provided that the

linearization of the overall system is controllable at that point,

which would depend on the particular values of the parameters

in (6). Thus, it remains to force the state x of the system into

the stability region of the target point, after what control can

be handed over to the low-level controller. In this instance

of the attainability problem, the initial set X0 could be a

neighborhood of the origin in R
2p, the target set X1, a positive

invariant subset of the stability region of the target point, and

the set X2 ⊆ R
2p of admissible states could be defined by

constraints on the position of the cart. This kind of problem

may be solved in the following way [1], [3]: First, the system

(6)-(7) is sampled, which results in a discrete-time system of

form (1). Then the state space of the sampled system (1)

is quantized by supplementing (1) at its output with a static

system

Ω(k) ∈ Q(x(k)). (8)

In Fig. 1(b), translation between continuous-time and discrete-

time signals as well as quantization is realized by interface

devices. Specifically, the open loop composed of actuator,

cart-pole system and generator is represented by the sampled

and quantized system (1),(8). The latter, in turn, is approx-

imated by a discrete abstraction, a term reserved throughout

this paper for a superset of the behavior of (1),(8) in the sense

of WILLEMS [4] that can be represented by a finite automaton.

That is, the automaton is capable of generating every signal

that could possibly be generated by (1),(8), but may (and will)

additionally generate spurious signals.

Finally, to determine a supervisor, a discrete attainability

problem for the abstraction needs to be solved, which reduces

to a distance problem in some hypergraph. A supervisor

obtained in this way would solve the original, continuous

attainability problem.

There are two difficulties with the approach outlined above,

namely, computation of an abstraction of the overall 2p-

dimensional plant (1),(8) could be extremely time consuming,

and the hypergraph for which distances had to be computed

could be excessively large. In contrast, the method we propose

in this paper requires determining a total of p factor abstrac-

tions of 2-dimensional sampled and quantized sub-systems,

each corresponding to one of the p systems (7) and (6), and the

overall hypergraph is implicitly represented by much smaller

sub-graphs, which correspond to the factor abstractions.

The remaining of this paper is structured as follows. In

section II, we review notation and terminology related to

systems, behaviors and hypergraphs. In section III, the class of

attainability problems we intend to solve is formally given and

reduced to a distance problem in a hypergraph representing a

finite state model of the plant. In section IV, we derive an

analog of the method from section III which takes advantage of

the structure of decomposable plants and is capable of solving

highly complex, previously intractable attainability problems.

Finally, in section V, we demonstrate the application of the

method from section IV to the pendulum example that has

been discussed earlier in the present section.

II. PRELIMINARIES

A. Basic notation and terminology

R and Z denote the sets of real numbers and integers,

respectively, and R+ and Z+, their subsets of non-negative

elements. [a, b],]a, b[, [a, b[, and]a, b] denote closed, open

and half-open, respectively, intervals with end points a and

b, e.g. [0,∞[= R+. [a; b],]a; b[, [a; b[, and]a; b] stand for

discrete intervals, e.g. [a; b] = [a, b] ∩ Z. We endow R
n with

the standard Euclidean product 〈·|·〉, i.e., 〈x|y〉 =
∑n

i=1 xiyi

for any x, y ∈ R
n. For any sets A and B, P(A) is the power

set of A, and f : A → B denotes a map of A into B.

B. Behaviors

Here and in the sequel, BA denotes the set of all maps

A → B. Given an arbitrary set W called signal alphabet,

any subset B ⊆ W Z+ is a behavior on W . Hence, elements

of B are infinite sequences w : Z+ → W , which we call

signals. We interchangeably use w(k) and wk to denote

the value of the signal w at time k. We often identify the

restriction w|[k,k′] of a signal w : Z+ → W to [k, k′] with the

tuple (w(k), w(k + 1), . . . , w(k′)), which implies we identify

w|[k,k′] with (σkw)|[0,k′−k]. Here, στ denotes the backward

τ -shift defined by (στw) (k) = w(τ + k). The restriction of

B to I ⊆ Z+, B|I , is defined by B|I := {w|I |w ∈ B}.

B is time-invariant if σ1B ⊆ B. B is N -complete, or

equivalently, B has memory span N , if N ∈ Z+ and

B =
{
w ∈ W Z+

∣∣ ∀τ∈Z+
(στw)|[0;N] ∈ B|[0;N]

}
. A superset

B′ of a behavior B ⊆ W Z+ is called an abstraction of B,

and B′ is additionally called discrete if it can be realized by

5912

a finite automaton. In particular, an abstraction that has finite

memory span is discrete.

C. Discrete-time systems

In (1) with right hand side G : X × U → X , u : Z+ → U
represents an input signal and x : Z+ → X , an output signal.

A trajectory of (1) is a sequence (x, u) : Z+ → X × U for

which (1) holds for all k ∈ Z+. The collection of such

trajectories is called the behavior of (1).

D. Hypergraphs

We provide basic terminology from the theory of directed

hypergraphs, see [5] and the references given there, where

we specialize to what is usually called an F-hypergraph, and

extend the terminology to allow for loops, parallel hyperedges,

and labels.

A (directed) hypergraph is a triple (V,E,U) of a finite

set V of vertices, a finite set U of labels, and a set

E ⊆ U × V × (P(V) \ {∅}) of hyperedges. (V ′, E′, U ′) is

called the sub-hypergraph of (V,E,U) induced by the subset

E′ ⊆ E of hyperedges, if V ′ =
⋃

(u,v,W)∈E′{v} ∪ W and

U ′ = {u | (u, v,W) ∈ E′}. (V ′, E′, U ′) is called the sub-

hypergraph of (V,E,U) induced by the subset V ′ ⊆ V of

vertices, if E′ = {(u, v,W) ∈ E | {v} ∪ W ⊆ V ′} and U ′ is

as before.

Let (V,E,U) be a directed hypergraph. If h = (u, v,W) ∈
E, then v, u, and W are the initial vertex, the label, and

the head, resp., of h, and elements of W are called terminal

vertices of the hyperedge h. We also use the notation T (h) :=
v, H(h) := W , and L(h) := u. The size of (V,E,U) is

defined to be |E| +
∑

e∈E |H(e)|.
In complete analogy to ordinary directed graphs, we call

an alternating sequence P = (v1, e1, . . . , eq, vq+1) of vertices

vi and hyperedges ei a path from v1 to vq+1 of length q if

v1 = T (e1), vq+1 ∈ H(eq), and vj = T (ej) ∈ H(ej−1) for

all j ∈ {2, . . . , q + 1}. If S, T ⊆ V , then v ∈ V is reachable

from S via T in (V,E,U) if there is a path from some s ∈ S
to v whose vertices are in T . If T is not specified, we assume

T = V .

The concept of a hyperpath is more subtle: A subset E′ ⊆ E
is an F-path from a vertex s ∈ V to a set Z ⊆ V of vertices,

if the following two conditions hold: (i) There is an ordering

(e1, . . . , ek) of the vertices ei ∈ E′, k = |E′|, such that s =
T (e1) and H(ei) ⊆ Z ∪

⋃k
j=i+1 T (ej). (ii) E′ is minimal,

i.e., no proper subset of E′ satisfies condition (i). Note that

by minimality, different hyperedges in an F-path cannot share

a common initial vertex.

The length of an F-path E′ is the maximum length of a path

in the sub-hypergraph induced by E′, and the distance from

s to Z, denoted d(s, Z), is the minimum length of an F-path

from s to Z. If there is no such path, we set d(s, Z) = ∞.

III. REDUCTION OF CONTINUOUS ATTAINABILITY

PROBLEMS TO DISTANCE PROBLEMS IN HYPERGRAPHS

The attainability problem we seek to solve for the continu-

ous plant (1) is:

III.1 Problem. Let an initial set X0 ⊆ X , a target set X1 ⊆
X , and a set X2 ⊆ X of admissible states be given. Find a

controller R : X → P(U) \ {∅} such that the condition

x0 ∈ X0 =⇒ ∃k∈Z+

(
xk ∈ X1 and ∀t∈[1;k]xt ∈ X2

)
(9)

holds whenever x : Z+ → X is a sequence that fulfills

x(k + 1) ∈ G(x(k), R(x(k))) (10)

for all k ∈ Z+, where G(x,R(x)) denotes the set

{G(x, u) |u ∈ R(x)}.

In other words, using a controller R, which may in general

be non-deterministic, the state of the closed loop (10) should

be steered into the target set within finite time, from every-

where in the initial set, while state constraints x ∈ X2 should

be satisfied on the way to the target.

A. Quantization

Our first step towards a solution of Problem III.1 through

reduction to a finite problem is quantization of the continuous

state space of (1) and formulation of a suitable auxiliary

problem for the quantized system. To this end, we first choose

an open neighborhood W ⊆ X2 of X0 ∪ X1. We next

choose a finite covering C ′ of X0 ∪ X1 by full-dimensional

convex polyhedra (“operating range symbols”) whose union is

a subset of W , and finally supplement C ′ with additional full-

dimensional convex polyhedra (“overflow symbols”) that do

not intersect X0∪X1, to obtain a covering C of R
n. It follows

from [1, Lemma IV.7, Theorem IV.8] that this construction is

possible if X0 and X1 are compact and a neighborhood W as

chosen above exists, which we assume henceforth. We now

define the quantizer (8) by its system C of level sets (“cells”),

Q : R
n → P(C) : x 7→ {Ω ∈ C |x ∈ Ω} , (11)

where P(C) denotes the power set of C. As C is a covering

of R
n, Q(x) 6= ∅ for every x. Note also that this quantizer is

non-deterministic in general. The behavior B of the quantized

system (1),(8) is the collection of sequences (u,Ω): Z+ →
U ×C for which there exists a signal x : Z+ → R

n such that

(1) and (8) hold for all k ∈ Z+.

The following observation shows we can obtain a solution of

Problem III.1 through solving a suitable attainability problem

for the quantized system (1),(8).

III.2 Proposition. Define

Z0 = {Ω ∈ C |Ω ∩ X0 \ X1 6= ∅} , (12a)

Z1 = {Ω ∈ C |Ω ⊆ X1} , (12b)

Z2 = C ′, (12c)

let R′ : C → P(U) \ {∅}, and assume that the condition

Ω0 ∈ Z0 =⇒ ∃k∈Z+

(
Ωk ∈ Z1 and ∀t∈[1;k]Ωt ∈ Z2

)
(13)

holds for any sequence Ω: Z+ → C for which

x(k + 1) ∈ G(x(k), R′(Ω(k))), (14a)

Ω(k) ∈ Q(x(k)) (14b)

5913

is fulfilled for some x : Z+ → X and all k ∈ Z+. Further

assume the controller R : X → P(U) fulfills

∅ 6= R(x) ⊆
⋃

x∈Ω∈C

R′(Ω)

for every x ∈ X , where the union is taken over all Ω ∈ C
containing x. Then R solves Problem III.1.

B. Abstraction

The purpose of quantizing the state space of the continuous

plant (1) was to obtain a system whose input and output al-

phabets are finite. A difficulty is that, while (1) is 1-complete,

the quantized plant (1),(8) normally is not N -complete for

any N , which precludes a finite automata representation of

the latter and makes it difficult to solve Problem III.1 directly

with the help of (1),(8). We therefore intend to approximate

the behavior B of (1),(8) by a superset – an abstraction – that

does allow for a finite automaton realization. A natural choice

for such a superset would be the smallest 1-complete superset

of B, which is realizable and is called the 1-complete hull of

B [1], [3] and is given by [6], [7]
{
(u,Ω): Z+ → U × C

∣∣ ∀k∈Z+
G(Ωk ∩ X,uk) ∩ Ωk+1 6= ∅

}
.

While the 1-complete hull can not be determined exactly

in general, the point is that other 1-complete abstractions

that conservatively and arbitrarily accurately approximate the

smallest one can be obtained for a large class of nonlinear sys-

tems (1) by overapproximating the set G(Ωk ∩X,uk)∩Ωk+1.

See [1] for an overview and for a recent and particularly

efficient and accurate method.

Once a suitable abstraction has been determined, we obtain

a solution to Problem III.1 from any solution to an auxiliary

problem for the abstraction, e.g. [7].

III.3 Lemma. Let B′ be a 1-complete abstraction of B, let Z0,

Z1 and Z2 be defined by (12), and let R′ : C → P(U)\{∅} be

such that (13) holds whenever (u,Ω) ∈ B′ and uk = R′(Ωk)
for all k ∈ Z+. Then R′ fulfills the assumptions in Prop. III.2.

C. Reduction to distance problems in hypergraphs

We next give a realization of 1-complete abstractions of B
in the language of hypergraphs, which should be easy to be

reinterpreted in terms of automata. We prefer hypergraphs to

automata as we aim at the application of efficient algorithms

from hypergraph theory.

III.4 Definition. The hypergraph (C,E,U) realizes a 1-

complete abstraction of B if

E = {(u,Ω, h(u,Ω)) |u ∈ U,Ω ∈ C} , (15a)

C ⊇ h(u,Ω) ⊇ {Ω′ ∈ C |G(Ω ∩ X,u) ∩ Ω′ 6= ∅} . (15b)

We finally show that the solution of a distance problem

in a hypergraph that realizes an abstraction of B provides

a solution to the continuous attainability problem III.1. The

following theorem is obtained by extending a result on presta-

bilizability from [8] to allow for the state constraint x ∈ X2,

and combining it with Proposition III.2 and Lemma III.3 as

well as with results that guarantee the existence of a suitable

quantizer [1, Lemma IV.7, Theorem IV.8].

III.5 Theorem. Let X0 and X1 be compact, and let there

exist an open neighborhood W ⊆ X2 of X0 ∪X1. Define the

quantizer Q and the covering C as in section III-A, let Z0,

Z1 and Z2 be defined by (12), and let B be the behavior of

the quantized system (1),(8). Let further be H a hypergraph

that realizes a 1-complete abstraction of B, and H ′, the sub-

hypergraph of H induced by Z2, and let d be the distance

function in H ′.

Then the continuous attainability problem III.1 has a solu-

tion if d(Ω, Z1) < ∞ for all Ω ∈ Z0.

It follows that Problem III.1 can be efficiently solved using

well-known algorithms for distance problems in hypergraphs

[9]. In fact, these algorithms are easily supplemented with

just one additional command in order to obtain a controller in

addition to the distance function and may be implemented to

run in time linear in the size of H [9].

IV. AN EFFICIENT METHOD FOR DECOMPOSABLE PLANTS

In this section, we will exploit the structure (5) of the right

hand side G of the system (1) in order to improve the efficiency

of the general method from section III.

The general procedure of choosing a quantizer (11) will be

the same as in section III. However, in order to exploit the

product structure of the plant (1), we will need to choose a

quantizer that is compatible with the structure of (1). This will

allow us to consider completely decoupled quantized versions

of the sub-plants (5). As in section III, we first choose an

open neighborhood W ⊆ X2 of X0 ∪X1. We next fix p full-

dimensional, compact, convex polyhedra Yi ⊆ R
ni in the state

spaces of the p sub-plants (5) and set Y := Y1 × · · · × Yp.

In addition to the requirements imposed on C ′ in section III,

we here additionally restrict the cells in C ′ to be scaled and

translated copies of Y , and the overflow symbols in C \C ′, to

possess a product structure. The following result shows that

such a construction is always feasible. The point here is that

by compactness of X0 and X1 and by openness of W one can

choose overflow symbols that do not intersect X0 ∪ X1. See

also Fig. 2.

IV.1 Proposition. Let X0 and X1 be compact, Y and W be

as above, and let λ̂ > 0. Then there exists λ, 0 < λ < λ̂, and

a finite covering C ′ of X0∪X1 whose elements are translated

copies of λY whose union is contained in W , and C ′ can be

supplemented to a finite cover C of R
n whose elements are

full-dimensional convex polyhedra. Moreover, C and C ′ can

be chosen such that

C = {Ω1 × · · · × Ωp |Ω1 ∈ C1, . . . ,Ωp ∈ Cp} (16)

and Ω ∩ (X0 ∪ X1) = ∅ whenever Ω ∈ C \ C ′.

We now define quantizers Qi for the sub-plants (5) by

Qi(xi) = {Ωi ∈ Ci |xi ∈ Ωi} , (17)

5914

W

X2

X0

X1

C ′

2

︸ ︷︷ ︸
C ′

1 C1 \ C ′

1C1 \ C ′

1

C2 \ C ′

2

C2 \ C ′

2

Figure 2. Illustration of the covering constructed in Proposition IV.1 in the
case p = 2. Shaded cells are operation range symbols in C′.

and the quantizer (11) of the overall plant (1), by

Q(x) = (Qi(xi), . . . , Qp(xp)).

Once that kind of quantizer has been designed, the following

result shows that the product of hypergraphs realizing abstrac-

tions of Bi realizes an abstraction of the overall plant.

IV.2 Lemma. For each i ∈ {1, . . . , p} let the hypergraph

Hi = (Ci, Ei, U) realize an 1-complete abstraction of the

behavior Bi of the ith quantized sub-plant. Then the product

hypergraph H = (C,E,U) realizes an 1-complete abstraction

of the behavior B of the overall plant, where E is the set of all

(u,Ω1×· · ·×Ωp,
{
Ω′

1 × · · · × Ω′

p

∣∣ Ω′

1 ∈ W1, . . . ,Ω
′

p ∈ Wp

}
)

for which (u,Ωi,Wi) ∈ Ei for all i ∈ {1, . . . , p}.

It follows that the abstractions of the sub-plants may be de-

termined independently and concurrently. Since the dimension

of the overall state space is the product of the dimensions of

the state spaces of the sub-plants, a direct determination of

an abstraction of the overall plant would typically be slower

by several orders of magnitude. In order to devise a method

that efficiently solves the continuous attainability problem III.1

for decomposable plants, we now present an algorithms for

computing distances in hypergraphs which works directly with

the factor abstractions.

IV.3 Theorem. Let X0 and X1 be compact, and let there

exist an open neighborhood W ⊆ X2 of X0 ∪ X1. Define

the quantizer Q and the covering C as in section IV above,

let Z0, Z1 and Z2 be defined by (12), and let Bi denote the

behavior of the quantized sub-system (5),(17). Let further be

Hi a hypergraph that realizes a 1-complete abstraction of Bi,

and H , the product of the Hi as defined in Lemma IV.2, and

H ′, the sub-hypergraph of H induced by Z2, and let d be the

distance function in H ′. Then the following holds.

(i) The distance function d(·, Z1) is given by the output V
of the algorithm in Fig. 3.

(ii) If d(Ω, Z1) < ∞ for all Ω ∈ Z0, then the output R′

satisfies the hypotheses of Lemma III.3, and hence, a

solution R to the continuous attainability problem III.1

is obtained as in Lemma III.3.

(iii) The running time of the algorithm in Fig. 3 is linear in

the size of H .

Input: p, Hi = (Ci, Ei, U) (i ∈ {1, . . . , p}), Z0, Z1, Z2

1: for all i ∈ {1, . . . , p} do

2: for all j ∈ {1, 2, 3} do

3: Zj,i := {Ωi |Ω1 × · · · × Ωp ∈ Zj}
4: end for

5: (Z2,i, E
′

i, U
′

i) := sub-hypergraph of Hi induced by Z2,i

6: Compute distances di(·, Z1,i) in (Z2,i, E
′

i, U
′

i)
7: Ti := {Ω ∈ Z2,i | di(Ω, Z1,i) < ∞}
8: Ai := {Ω ∈ Z2,i |Ω reachable from Z0,i via Ti

in (Z2,i, E
′

i, U
′

i)}
9: (Ai, E

′′

i , U ′′

i) := sub-hypergraph of (Z2,i, E
′

i, U
′

i)
induced by Ai

10: end for

11: Q := Z1; R′ := arbitr.; V (Ω) :=

{
0, if Ω ∈ Z1,

∞, if Ω ∈ Z2 \ Z1

12: while Q 6= ∅ do

13: pick Ω ∈ argmin {V (Ω′) |Ω′ ∈ Q}
14: Q := Q \ {Ω}
15: for all e1 = (u,Ω′

1,W1) ∈ E′′

1 with Ω1 ∈ W1 do

16: . . .
17: for all ep = (u,Ω′

p,Wp) ∈ E′′

p with Ωp ∈ Wp do

18: W =
{

Ω̃1 × · · · × Ω̃p

∣∣∣ Ω̃1 ∈ W1, . . . , Ω̃p ∈ Wp

}

19: Ω′ = Ω′

1 × · · · × Ω′

p

20: if Ω′ ∈ Z2, W ∩ Q = ∅ and V (Ω′) > 1 + V (Ω)
then

21: R′(Ω′) := u
22: V (Ω′) := 1 + V (Ω)
23: Q := Q ∪ {Ω′}
24: end if

25: end for

26: . . .
27: end for

28: end while

Output: V , R′

Figure 3. Algorithm that determines a controller R′ for a decomposable
plant by computing distances to Z1 in a sub-hypergraph of H and working
directly with the factors Hi.

The algorithm in Fig. 3 is an extension of the one in [9],

which works directly with the factor abstractions. First of

all, there is a preprocessing step, consisting of lines 1-10,

whose execution is not necessary for the correct behavior

of the algorithm, nor does it change the asymptotic worst-

case complexity of the latter. However, that step implements

a heuristic which, in practice, may considerably reduce the

size of the distance problem to be solved by the main loop

of the algorithm; see section V. Essentially, for each of

the factors Hi, overflow symbols are removed, an auxiliary

distance problem is solved (line 6), and based on the solution

of the latter, each factor is shrunk again without affecting the

distance function and the controller to be computed by the

main loop. In the main loop (lines 12-28), the for-loop over

5915

the hyperedges in H ′ is represented by p nested for-loops,

which corresponds to the necessity of directly walking through

the sets of hyperedges of the factor hypergraphs. In addition,

the condition Ω′ ∈ Z2, whose computational verification is

trivial, had to be included on line 20 since Z2 does not

necessarily decompose and the sub-hypergraph H ′ is never

explicitly computed.

V. EXAMPLE

In this section, we demonstrate the application of our

method to the simplest case of the pendulum example from

Section I, namely, to the problem of swinging up a single

pendulum mounted on a cart, in which case the overall

plant is 4-dimensional and decomposes in p = 2 sub-plants.

Specifically, one copy of (6) describes the motion of the

pole, and (7), of the cart, and the overall system (6),(7)

with parameters ω1 = 1 and γ1 = 0.0125 models a real

experimental setup.

The low-level controller in Fig. 1 is defined by the affine

feedback u = K(x − (π, 0, 0, 0)), K = (−3,−2.8, 0.15, 1),
which stabilizes the system at (π, 0, 0, 0). Using SOS-

programming techniques [10], [11] we have verified that the

ellipsoid

Γ =
{
x ∈ R

4
∣∣ 〈x|Px〉 ≤ 1

}

is a positive invariant subset of the stability region, where P
is the symmetric matrix given by

P =

8.674 8.297 −1.25 −3.809
· 8.443 −1.236 −3.823
· · 0.375 0.657
· · · 2.303

 .

The set U of admissible control symbols consists of 11 signals,

which are constant on their intervals of definition. Specifically,

7 of those signals are defined on [0, 1/3] with values 0,

±1.2, ±0.8, and ±0.4, and the remaining 4 are defined on

[0, 2/9] with values ±0.9 and ±0.45. From the continuous-

time model (6)-(7) we obtain a discrete-time plant (1) by

non-uniform sampling. More precisely, the right hand side

G of (1) is defined by G(x0, u) = ϕ(T (u), x0, u), where

u ∈ U , ϕ(t, x0, u) is the solution at time t of the initial value

problem composed of the ODE (6)-(7) and the initial condition

x(0) = x0, and the sampling time T (u) ∈ {1/3, 2/9} is the

length of the interval of definition of u. The discrete-time

plant (1) is subject to the constraints

|x3|, |x4| ≤ 2.4, |x2| ≤ π. (18)

Here, we focus on the design of a supervisor that steers the

state into the stability region. Specifically, we set X2 :=
R × [−π, π] × [−2.4, 2.4] × [−2.4, 2.4], which reflects the

constraints (18), X0 = [−0.05, 0.05]
4
, and X1 = Γ. For each

of the two sub-plants, we use translated copies of a rectangle,

intersected with [0, 2π]× [−π, π] and [−2.4, 2.4]× [−2.4, 2.4],
respectively, as operating range cells. The coverings C ′

1 and

C ′

2 thus obtained are then supplemented by the two overflow

symbols R × [π,∞[and R ×]−∞,−π] in the case of the

0

0 2π

π

−π

1

4

6

9

10
11

13

16

18
19

20

(a)

−2.4 2.4

2.4

−2.4

0
0

4

6

9

11

13

1618

20
23

(b)

-0.8

-0.4

0.8
0.9

−1.2

1.2

1 2 3 4 5 6 7

(c)

Figure 4. State space of pole (a) and cart (b). The larger (resp., smaller)
ellipsoid is the projection of the stability region Γ onto (resp., the intersection
of Γ with) the state space of the sub-plant. Γ accounts for less than 1% of
the volume of the state space; see Tab. I. The supervisor forces the state into
Γ within at most 33 steps, from everywhere in a neighborhood of the origin.
One particular trajectory, which starts precisely at the origin, is illustrated in
(a), (b), and the corresponding control signal is shown in (c).

5916

Table I
COMPUTATIONAL RESULTS FOR THE EXAMPLE IN SECTION V.

state space X′

2
: [0, 2π] × [−π, π] × [−2.4, 2.4] × [−2.4, 2.4]

target region X1: Γ Γ/
√

2 Γ/2
vol(X1)/vol(X′

2
) in %: 0.819 0.205 0.0512

pole:
CPU (abstraction) 559 1020 2320
vertices/103 7.44 13.1 29.3
size/103 452 795 1770
vertices (shrunk)/103 7.14 12.6 28.3
size (shrunk)/103 440 776 1730
cart:
CPU (abstraction) 239 465 1020
vertices/103 1.87 3.78 7.29
size/103 88.2 182 356
vertices (shrunk)/103 1.21 2.46 4.73
size (shrunk)/103 58.7 122 236
cart-pole system:

vertices/106 13.9 49.6 213
size/109 2.54 9.21 40.0
CPU (shrink) 0.466 1.86 8.09
vertices (shrunk)/106 8.63 31.1 134
size (shrunk)/109 1.65 6.01 26.0
CPU (supervisor) 50.0 197 956

pole, and by the four overflow symbols ± [2.4,∞[× R,

±(R × [2.4,∞[) in the case of the cart. See Fig. 4.

We implicitly consider (6) on the cylinder [12], i.e., on

X ′

2 := [0, 2π]× [−π, π]× [−2.4, 2.4]× [−2.4, 2.4] with x and

x + (2π, 0, 0, 0) identified. We also use analogous, but finer,

state space quantizations to steer the state into two shrunk

copies of Γ; see Tab. I.

Our computational experiments have been preformed on

an i7-920 CPU at 2.67GHz using 4 GBytes of RAM. Ab-

stractions of the sub-plants have been determined using an

implementation of the method from [1] in Mathematica 7.0

[13], which is an interpreter, run on 6 CPU threads for the

pole, and 2, for the cart system. The algorithm in Fig. 3

has been implemented in C and run on the same computer

using a single thread. Computational results are collected

in Tab. I, where we report the number of vertices and the

size of the factor hypergraphs (Z2,i, E
′

i, U
′

i) and their shrunk

variants (Ai, E
′′

i , U ′′

i), which are computed by the algorithm

in Fig. 3. Properties of the product of those factor hypergraphs

are also reported (“cart-pole system”), together with wall clock

times in seconds for computing the abstractions of the factors,

for shrinking all the factor hypergraphs, and for computing

a supervisor. All quantities are rounded to three decimal

digits. Note that the abstractions of the two factors can be

computed concurrently. Hence, despite their complexity, the

three instances of the continuous attainability problem III.1

considered here can be solved within less than 11, 21 and 55,

respectively, minutes. We emphasize that these computations

are to be performed off-line. They yield a feedback controller

in the form of a look-up table, suitable for real-time application

in the closed loop of Fig. 1(b).

From the data in Tab. I it is also seen that the compu-

tational effort to determine the abstractions of the factors

grows linearly with the number of cells used for quantizing

the state space, and the effort to determine the supervisor

grows linearly with the size of the hypergraph realizing an

abstraction of the overall plant. Finally, the heuristics for

shrinking the factor hypergraphs proves very effective, and

the computational effort required by it is negligible.

VI. CONCLUSION

We have proposed a method that uses finite state models for

solving continuous attainability problems for nonlinear decom-

posable plants. Specifically, the plants consist of sub-plants

that may share a common input but are otherwise coupled

only through the specification of the attainability problem,

possibly including state constraints. Our method only requires

computation of abstractions of the sub-plants rather than of the

overall plant. The explicit representation of an abstraction of

the latter is also avoided in the solution of the auxiliary discrete

attainability problems that arise. This way, we are able to solve

highly complex, previously intractable continuous attainability

problems within minutes on a customary personal computer.

In the special case of reachability problems, these off-line

computations yield a feedback controller in the form of a look-

up table, suitable for real-time application.

The extension of our method to cover abstractions of finite

but otherwise arbitrary memory span and to solve optimal

control variants of attainability problems, and its combination

with local refinement strategies [14], [15] and with hierarchical

approaches [16] will be the subject of future research.

REFERENCES

[1] G. Reißig, “Computing abstractions of nonlinear systems,” 2009, sub-
mitted for publication, Sep. 29, 2009, http://arxiv.org/abs/0910.2187.

[2] P. Tabuada, Verification and control of hybrid systems. Springer, 2009.
[3] G. Reißig, “Computation of discrete abstractions of arbitrary memory

span for nonlinear sampled systems,” in HSCC’2010, San Francisco,

U.S.A., Apr. 13-15, 2009, Lect. Notes Computer Science, vol. 5469,
pp. 306–320, http://www.reiszig.de/gunther/pubs/i09HSCC.abs.html.

[4] J. C. Willems, “Models for dynamics,” in Dynamics reported, Vol. 2,
Ser. Dynam. Systems Appl. Wiley, 1989, vol. 2, pp. 171–269.

[5] M. Thakur and R. Tripathi, “Linear connectivity problems in directed
hypergraphs,” Theoret. Comput. Sci., vol. 410, no. 27-29, pp. 2592–
2618, 2009.

[6] T. Moor and J. Raisch, “Supervisory control of hybrid systems within
a behavioural framework,” Systems Control Lett., vol. 38, no. 3, pp.
157–166, 1999, hybrid control systems.

[7] T. Moor, J. M. Davoren, and B. D. O. Anderson, “Robust hybrid control
from a behavioural perspective,” in Proc. CDC 2002, pp. 1169–1174.

[8] C. M. Özveren, A. S. Willsky, and P. J. Antsaklis, “Stability and
stabilizability of discrete event dynamic systems,” J. Assoc. Comput.

Mach., vol. 38, no. 3, pp. 730–752, 1991.
[9] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen, “Directed hypergraphs

and applications,” Discrete Appl. Math. 42, no. 2-3, pp. 177–201, 1993.
[10] D. Henrion and A. Garulli, Eds., Positive polynomials in control, Lecture

N. in Control and Information Sci. Springer, 2005, vol. 312.
[11] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in

MATLAB,” in Proc. CACSD 2004, Taipei, Taiwan, Sep. 2-4, 2004.
[12] E. D. Sontag, Mathematical control theory, 2nd ed., Springer, 1998.
[13] S. Wolfram, The Mathematicar book, 5th ed. Wolfram Media, 2003.
[14] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,

and M. Theobald, “Abstraction and counterexample-guided refinement
in model checking of hybrid systems,” Internat. J. Found. Comput. Sci.,
vol. 14, no. 4, pp. 583–604, 2003.

[15] O. Stursberg, “Supervisory control of hybrid systems based on model
abstraction and guided search,” Nonl. Anal. 65, pp. 1168–1187, 2006.

[16] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control
of decentralized discrete event systems,” IEEE Trans. Automat. Control,
vol. 53, no. 10, pp. 2252–2265, 2008.

5917

