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Abstract. In this paper, we present a new method for computing dis-
crete abstractions of arbitrary memory span for nonlinear sampled sys-
tems with quantized output. In our method, abstractions are represented
by collections of conservative approximations of reachable sets by poly-
hedra, which in turn are represented by collections of half-spaces. Im-
portant features of our approach are that half-spaces are shared among
polyhedra, and that the determination of each half-space requires the
solution of a single initial value problem in an ordinary differential equa-
tion over a single sampling interval only. Apart from these numerical
integrations, the only nontrivial operation to be performed repeatedly
is to decide whether a given polyhedron is empty. In particular, in con-
trast to previous approaches, there are no intermediate bloating steps,
and convex hulls are never computed. Our method heavily relies on con-
vexity of reachable sets and applies to any sufficiently smooth system if
either the sampling period, or the system of level sets of the quantizer
can be chosen freely. In particular, it is not required that the system to
be abstracted have any stability properties.
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1 Introduction

A well-known method for the solution of analysis and synthesis problems for
continuous, discrete and hybrid systems consists in first computing a discrete
abstraction of the system’s behavior in the sense of Willems [1,2], and then
solving a corresponding (auxiliary) problem for the abstraction, e.g. [3,4,5,6,7,8].
Here, the term abstraction refers to a conservative approximation, i.e., a superset,
of the system’s behavior, which is called discrete if it can be realized by a finite
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(in general non-deterministic) automaton. Auxiliary problems arising in this
way are solvable controller synthesis problems if the original problem is and the
abstraction is sufficiently accurate. Solvability may be verified, and solutions may
be obtained using well-known algorithms from discrete mathematics [9,10,11,8].
In addition, under mild assumptions, it follows from the conservativeness of the
approximation that any solution of the auxiliary problem will also be a solution
to the problem for the original system, e.g. [5,6,7,8]

One of the most complex steps in the above approach is the computation
of sufficiently accurate discrete abstractions, which is equivalent to conservative
approximation of a large number of reachable sets [6]. Known methods are re-
stricted to rather limited classes of systems or to abstractions of memory span
1, lead to overly conservative abstractions, suffer from their prohibitive compu-
tational complexity, or require the solution of non-convex optimization or opti-
mal control problems, see [12,13,14,15,16,17,18,19,20,21] and the references given
there. In this paper, we present a new method for computing discrete abstrac-
tions of arbitrary memory span for nonlinear sampled systems with quantized
output.

In our method, abstractions are represented by collections of conservative
approximations of reachable sets by polyhedra, which in turn are represented by
collections of half-spaces: We start from a collection of conservative polyhedral
approximations of the level sets of the quantizer, which represents a discrete
abstraction of memory span 0, and then iteratively determine conservative poly-
hedral approximations of the reachable sets that define abstractions of greater
memory span. Important features of our approach are that half-spaces are shared
among polyhedra, and that the determination of each half-space requires the so-
lution of a single initial value problem in an ordinary differential equation over a
single sampling interval only. Apart from these numerical integrations, the only
nontrivial operation to be performed repeatedly is to decide whether a given
polyhedron is empty. In particular, in contrast to previous approaches, there
are no intermediate bloating steps, and convex hulls are never computed. Our
method heavily relies on convexity of reachable sets and applies to any suffi-
ciently smooth system if either the sampling period, or the system of level sets
of the quantizer can be chosen freely. In particular, it is not required that the
system to be abstracted have any stability properties.

The remaining of this paper is structured as follows: In section 2 we define
the class of sampled systems with quantized output, for which we shall develop
an efficient algorithm for computing discrete abstractions. In section 3 we char-
acterize the smallest of those abstractions in terms of reachable sets. In section
4, we present an efficient algorithm for computing discrete abstractions for the
class of systems introduced in section 2, under the assumption that all relevant
reachable sets are convex. We also discuss two recent results from [22,23] from
which convexity of reachable sets can be deduced under mild conditions. Finally,
we apply our method to the problem of swinging up the mathematical pendulum
in section 5. Proofs of our results will be published with an extended (journal)
version of this manuscript.
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2 Sampled systems with quantized output

Let the control system
ẋ = f(x, u(t)) (1)

with f : R
n ×R

m → R
n, a sampling period T > 0, and a finite set U ⊆ (Rm)

[0,T ]

of admissible controls on sampling intervals be given. Hence, elements of U are
signals [0, T ] → R

m, and we identify each sequence (uk)k∈Z+
of such signals with

a control signal defined on R+,

(u0, u1, . . . )(t) := u⌊t/T⌋(t− ⌊t/T ⌋) for all t ≥ 0,

see Fig. 1. Here, ⌊x⌋ denotes the largest integer not greater than x, R+ and Z+,
the set of nonnegative reals and integers, respectively, and AB , the set of maps
B → A.

0 T 2T 3T R

R
m

u0

u1(· − T )

u2(· − 2T )

Fig. 1. An admissible control signal for (1).

The set U of controls u : R+ → R
m admissible for (1) is now defined as the

set of all sequences in U ,

U =
{
u : R+ → R

m
∣∣∀k∈Z+

∃uk∈U ∀t∈[kT,(k+1)T [ u(t) = uk(t− kT )
}
. (2)

Here, [a, b], ]a, b[, and [a, b[, ]a, b] denote closed, open and half-open intervals,
respectively.

We assume throughout this paper that for any admissible control u ∈ U ,
initial value problems composed of (1) and an initial condition

x(0) = x0 (3)

are uniquely solvable for any x0 ∈ R
n, with all solutions extendable to the entire

time axis R+.
As an extension of the well-known concepts of flow and general solution for

ordinary differential equations [24,25], we define the general solution ϕ of (1) by

ϕ(t, x0, u) := value of the solution of initial value problem (1), (3) at time t,

where x0 ∈ R
n and u ∈ U . Note that it is not necessary to specify all the

components uk of u = (u0, u1, . . . ), and that the values of u at sampling instants
are irrelevant, so we may write

ϕ(t, x0, u0, . . . , uk) := ϕ(t, x0, u) if t ≤ (k + 1)T , u = (u0, . . . , uk, . . . ).
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We now consider the sampled version

x(k + 1) = ϕ(T, x(k), uk), k ∈ Z+ (4)

of (1), where ϕ is the general solution of (1). By our assumptions on (1), the right
hand side of the difference equation (4) is defined for all (x(k), uk) ∈ R

n × U .
We define the quantizer by specifying its level sets: Let C ⊆ P(Rn) be a

finite covering of the state space R
n of (4) that does not contain the empty set,

where P(M) denotes the power set of M . The quantizer Q is defined as the map

Q : R
n → P(C) : x 7→ {Ω ∈ C |x ∈ Ω } . (5)

Note that Q(x) 6= ∅ for any x ∈ R
n as C is a covering of R

n, and that, in
general, the quantizer is non-deterministic. See [13] for the equivalent concept
of a “measurement map”.

The system composed of the sampled system (4) and the quantizer (5) shown

u x

Sampled System (4) Quantizer (5)
Ω

Fig. 2. Sampled system with quantized output.

in Fig. 2 may be described by the following difference equation with set valued
output:

x(k + 1) = ϕ(T, x(k), uk), k ∈ Z+, (6a)

Ωk ∈ Q(x(k)). (6b)

The (external) behavior [1,2] B(6) of the system (6) is the set of all (external)

signals (u,Ω) ∈ UZ+ × CZ+ that are compatible with (6), i.e.,

B(6) =
{

(u,Ω)
∣∣ ∃x : Z+→Rn ∀k∈Z+

(x(k) ∈ Ωk and x(k + 1) = ϕ(T, x(k), uk))
}
.

(7)

3 Smallest discrete abstractions and reachable sets

In this section we characterize the smallest N -complete discrete abstraction of
the behavior B(6) given by (7) in terms of reachable sets of the time-continuous

control system (1). We begin with some terminology from behavioral theory [2]:
Let a set I ⊆ Z+, an arbitrary set X and a behavior B ⊆ XZ+ be given. The

restriction of B to I, B|I , is defined by B|I := {x|I |x ∈ B }, where x|I denotes
the restriction of the map x to I.
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B is called time-invariant if σB ⊆ B, where σ denotes the shift operator
defined by σ := σ1 and (σkx)(t) := x(t+k) for all x : Z+ → X and all k, t ∈ Z+.

If B is time-invariant, it is called complete if

B =
{
x ∈ XZ+

∣∣ ∀k1,k2∈Z+,k1≤k2
x|[k1,k2] ∈ B|[k1,k2]

}
,

and it is called complete with memory span N (or N -complete, for short) for
some N ∈ Z+ if

B =
{
x ∈ XZ+

∣∣ ∀k∈Z+
(σkx)|[0,N ] ∈ B|[0,N ]

}
.

If B is time-invariant, we call the set
⋂

B⊆B′⊆X
Z+ ,

B′ is N-complete

B′ (8)

the N -complete hull of B. (The map that assigns to B its N -complete hull (8)
is a closure operator [26], which is why we call (8) a hull ; N -complete hulls are
called “strongest N -complete approximations” in [6].)

The behavior B(6) of the sampled system with quantized output is time-

invariant, but in general not complete, which is why we are looking for a discrete
abstraction of it. For any N ∈ Z+, the N -complete hull of B(6) is the smallest

abstraction of the kind we seek to obtain. Unfortunately, that abstraction may
be computed exactly for special classes of systems (1) and quantizers (5) only.
Nevertheless, the following characterizations of that smallest abstraction will be
useful in the next section when we derive an algorithm for effectively computing
another abstraction that conservatively approximates the smallest one.

Theorem 1. Let N ∈ Z+ and BN be the N -complete hull of the behavior B(6)
given by (7), ϕ the general solution of (1), and (u,Ω) ∈ UZ+ × CZ+ . Then the
following are equivalent:

(i) (u,Ω) ∈ BN .
(ii) For all τ ∈ Z+ there exists x0 ∈ R

n such that ϕ(kT, x0, uτ , . . . , uτ+k−1) ∈
Ωτ+k holds for all k ∈ {0, . . . , N}.

(iii) For all τ ∈ Z+ the following holds:

Ωτ+N ∩
N⋂

k=1

ϕ(kT,Ωτ+N−k, uτ+N−k, . . . , uτ+N−1) 6= ∅. (9)

(iv) Mτ
N 6= ∅ for all τ ∈ Z+, where Mτ

N is defined by

Mτ
0 = Ωτ ,

Mτ
k = Ωτ+k ∩ ϕ(T,Mτ

k−1, uτ+k−1) (k ∈ {1, . . . , N}).
Characterization (iv) has been given in [6], and a characterization similar to

(iii) has been proposed in [23].
A set of the form ϕ(t, Ω, u) arising in Theorem 1 is called reachable set from

Ω at time t under control u.
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4 Computation of discrete abstractions and convexity of

reachable sets

We have seen in Section 3 that computing the smallest discrete abstraction of a
particular memory span for the behavior B(6) given by (7) requires the solution

of numerous difficult reachability problems that may be solved exactly for special
classes of systems (1) and quantizers (5) only. In the present section, we aim at
computing another discrete abstraction which approximates the smallest one.
Our starting point is the following basic idea:

If Ωτ+N and all the reachable sets on the left hand side of condition (9) in
Theorem 1 were convex, these sets could be substituted with approximations
by means of supporting half-spaces. The resulting approximate condition would
then characterize a superset of the N -complete hull of B(6) that is N -complete,

and hence, a discrete abstraction of memory span N of B(6).

In the remaining of this section, we shall derive an algorithm for the compu-
tation of discrete abstractions of arbitrary memory span N for the behavior B(6)
given by (7) which approximates the N -complete hull of B(6). To this end, we

start with the question of how to obtain conservative polyhedral approximations
of reachable sets by means of supporting half-spaces.

Definition 1. Let Ω ⊆ R
n be convex and p ∈ Ω. A vector v ∈ R

n is normal

to Ω at p [27] if 〈v|x− p〉 ≤ 0 for all x ∈ Ω, where 〈·|·〉 denotes the standard
Euclidean inner product.

Proposition 1. Let the right hand side f of (1) be of class C1 w.r.t. its first
argument and continuous, and let ϕ denote the general solution of (1). Let further
u ∈ U be a piecewise continuous control admissible for (1), Ω ⊆ R

n be convex,
p ∈ Ω, v ∈ R

n, and τ ∈ R+. Finally, let v′ be the value at time τ of the solution
of the following initial value problem:

ẋ = −D1f(ϕ(t, p, u), u(t))∗x,

x(0) = v,

where (·)∗ denotes the transpose, and D1, the partial derivative w.r.t. the first
argument.
If the reachable set ϕ(τ,Ω, u) is convex, then v is normal to Ω at p if and only
if v′ is normal to ϕ(τ,Ω, u) at ϕ(τ, p, u).

The above result tells us that conservative polyhedral approximations of all
the reachable sets on the left hand side of condition (9) may be obtained from
analogous approximations of the level sets of the quantizer (5) by solving initial
value problems in the 2n-dimensional ordinary differential equation

ẋ = f(x, u(t)), (10a)

ẏ = −D1f(x, u(t))∗y. (10b)
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For further reference, we define a map ϕ∗ that realizes the determination of
a supporting half-space of the reachable set ϕ((k+ 1)T,Ω, u) from a supporting
half-space of Ω (k ∈ Z+):

ϕ∗ : R
n ×R

n ×U → R
n ×R

n : (p, v, u0, . . . , uk) 7→ ψ((k+ 1)T, (p, v), u0, . . . , uk),
(11)

where ψ is the general solution of (10) and T , the sampling period.

We now formalize the substitution of reachable sets on the left hand side of
condition (9) in Theorem 1 with approximations by means of supporting half-
spaces:

Definition 2. Let P be the map defined by

P : R
n × R

n → P(Rn) : (p, v) 7→ {x ∈ R
n | 〈v|x− p〉 ≤ 0 }

and set

P (Σ) =
⋂

(p,v)∈Σ

P (p, v)

for Σ ⊆ R
n × R

n.
Let Σ ⊆ R

n × R
n and Ω ⊆ R

n.
We call Σ a conservative polyhedral approximation of Ω if Ω ⊆ P (Σ), and a
supporting polyhedral approximation of Ω, if p ∈ Ω and v is normal to Ω at p,
for all (p, v) ∈ Σ.
If Σ is a conservative polyhedral approximation of Ω, (p, v) ∈ Σ is called redun-

dant in Σ if P (Σ) = P (Σ \ {(p, v)}).

Let N ∈ Z+, Ω0, . . . , ΩN ⊆ R
n, and u0, . . . , uN−1 ∈ U and define

M(Ω0, . . . , ΩN , u0, . . . , uN−1) := ΩN ∩
N⋂

k=1

ϕ(kT,ΩN−k, uN−k, . . . , uN−1).

Hence, M(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1) is just the set on the left hand side
of condition (9). For any convex Ω ⊆ R

n, let Σ(Ω) be a supporting polyhedral
approximation of Ω and define

M̂(Ω0, . . . , ΩN , u0, . . . , uN−1) :=

P (Σ(ΩN )) ∩
N⋂

k=1

P (ϕ∗(Σ(ΩN−k), uN−k, . . . , uN−1)) .

Hence, M̂(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1) is the left hand side of condition (9)
with all the reachable sets substituted with supporting polyhedral approxima-
tions obtained from application of the map ϕ∗ to supporting polyhedral approx-
imations of level sets of the quantizer.
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We now define

S(Ω0) := Σ(Ω0), (12)

S(Ω0, . . . , Ωk, u0, . . . , uk−1) := Σ(Ωk) ∪
k⋃

q=1

ϕ∗(Σ(Ωk−q), uk−q, . . . , uk−1) (13)

for all k ∈ {1, . . . , N} to obtain

M̂(Ω0, . . . , ΩN , u0, . . . , uN−1) = P (S(Ω0, . . . , ΩN , u0, . . . , uN−1)).

Hence, S(Ω0, . . . , ΩN , u0, . . . , uN−1) is a conservative polyhedral approximation

of M̂(Ω0, . . . , ΩN , u0, . . . , uN−1), though not necessarily a supporting one.
The following result shows that the sets S(. . . ) just defined enjoy a recursive

description analogous to the one for the sets Mτ
k . (See condition (iv) in Theorem

1.)

Theorem 2. Let N ∈ Z+, Ω0, . . . , ΩN ⊆ R
n be convex, and u0, . . . , uN−1 ∈

U . Let ϕ be the general solution of (1) and assume that the reachable sets
ϕ(kT,ΩN−k, uN−k, . . . , uN−1) are convex for all k ∈ {1, . . . , N}. For each k ∈
{0, . . . , N}, let Σ(Ωk) be a supporting polyhedral approximation of Ωk, and let
S(Ω0), . . . , S(Ω0, . . . , ΩN , u0, . . . , uN−1) be defined by (12)-(13). Then

S(Ω0, . . . , Ωk, u0, . . . , uk−1) = Σ(Ωk) ∪ ϕ∗(S(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)

for all k ∈ {1, . . . , N}.
Furthermore, if (p, v) is redundant in S(Ω0, . . . , Ωk−1, u0, . . . , uk−2), then it is
so in S(Ω0, . . . , Ωk, u0, . . . , uk−1).

It follows from the above result that half-spaces are shared among many of
the conservative polyhedral approximations M̂(. . . ) of reachable sets and that
the computational cost per half-space is just a single solution of an initial value
problem in the 2n-dimensional ordinary differential equation (10) over a single
sampling interval.

We now propose an algorithm that, under the assumption that reachable sets
are convex, determines discrete abstractions of the behavior B(6) given by (7).

Input:

(i) N ∈ Z+ (memory span of abstraction to be computed);
(ii) T , U , U (see section 2);
(iii) C: finite covering of R

n by convex polyhedra (level sets of the quantizer (5));
(iv) C ′ := {Ω ∈ C |Ω bounded };
(v) a set Ω̂ for each Ω ∈ C ′ with Ω ⊆ Ω̂ and reachable sets ϕ(kT, Ω̂, u) convex

for all k ∈ {0, . . . , N}, Ω ∈ C ′ and u ∈ U ;

(vi) a supporting polyhedral approximation Σ(Ω̂) of Ω̂ for all Ω ∈ C ′.

1: for all Ω ∈ C ′ do

2: S̃(Ω) = Σ(Ω̂)
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3: end for

4: for all Ω ∈ C \ C ′ do

5: S̃(Ω) = ∅
6: end for

7: for k = 1, . . . , N do

8: for all (Ω0, . . . , Ωk, u0, . . . , uk−1) ∈ Ck+1 × Uk do

9: if S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2) = ∅ then

10: Z := ∅
11: else if Ωk ∩ P (ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)) = ∅ then

12: Z := R
n × R

n

13: else if Ωk /∈ C ′ then

14: Z := ∅
15: else

16: Z := Σ(Ω̂k) ∪ ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)
17: end if

18: S̃(Ω0, . . . , Ωk, u0, . . . , uk−1) := Z
19: end for

20: end for

Output: S̃(. . . ).
The following result shows that the above algorithm determines a discrete

abstraction of the behavior B(6) of the sampled and quantized system (6).

Theorem 3. Denote by S̃(. . . ) the sets determined by the above algorithm. Un-
der the assumptions made in the list of inputs, the set

{
(u,Ω) ∈ UZ+ × CZ+

∣∣∣ ∀τ∈Z+
P (S̃(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1)) 6= ∅

}

is an N -complete conservative approximation of the behavior B(6) given by (7).

Some remarks are in order. First, note that the algorithm contains just two
nontrivial operations which need to be performed repeatedly, namely, the deter-
mination of the set

ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1), (14)

which appears at lines 11 and 16, and the test for emptiness at line 11. Regard-
ing the former operation, it follows from the definition (11) of the map ϕ∗ that

for each s ∈ S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), determination of (14) requires the
solution of an initial value problem in the 2n-dimensional ordinary differential
equation (10) over a single sampling interval. Hence, the set (14) may be de-

termined from at most |S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2)| such solutions, where | · |
denotes cardinality. As P (ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)) is a convex
polyhedron, the test for emptiness at line 11 may also be effectively performed
since Ωk is also a convex polyhedron by hypothesis (iii) in the list of inputs of
the algorithm.
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Second, it should be obvious that the sets ∅ and R
n ×R

n play a role similar
to zeros in sparse matrices [28,29]. In particular, if the sets S̃(. . . ) are stored

in a tree, sets S̃(. . . ) = ∅ and S̃(. . . ) = R
n × R

n do not need to be stored and
computations on them do not need to actually be performed.

Finally, note that all our arguments so far were based on the assumption
that reachable sets arising in characterizations of N -complete hulls are convex.
It follows from recent results of the author [22,23] that convexity of reachable
sets can be guaranteed under mild smoothness assumptions on the right hand
side f of the continuous control system (1). Let us briefly look at special cases
of two such results from [22].

Theorem 4. Let the right hand side f of (1) be of class C1,1 (C1 with Lipschitz
derivative) with respect to its first argument and continuous, and let u ∈ U be
piecewise continuous. Let further x0 ∈ R

n, r > 0 and t ≥ 0. Finally, assume
that

M1 ≥ 2µ+ (D1f(x, u(τ))) − µ− (D1f(x, u(τ))) (15)

holds for all (τ, x) ∈ R+ × R
n, and let M2 be a Lipschitz constant for the map

(τ, x) 7→ D1f(x, u(τ)) w.r.t. its second argument on R+×R
n. Then the reachable

set ϕ(t, B̄(x0, r), u) is convex if

rM2

∫ t

0

eM1τdτ ≤ 1. (16)

Here, µ+(M) and µ−(M) denote the maximum and minimum, respectively,
eigenvalues of the symmetric part (M + M∗)/2 of M , and B̄(x0, r), the closed
Euclidean ball of radius r centered at x0 w.r.t. the Euclidean norm ‖ · ‖.

Theorem 5. Let u, f , x0, r, and t as in Theorem 4 and assume in addition
that f is of class C2 with respect to its first argument. Then ϕ(t, B̄(x0, r), u) is
convex if and only if

∫ t

0

〈
x− x0

∣∣D2ϕ(τ, x, u)−1D2
1f(ϕ(τ, x, u), u(τ))(D2ϕ(τ, x, u)h)2

〉
dτ ≤ 1 (17)

for all x ∈ ∂B̄(x0, r) and all h ⊥ (x − x0) with ‖h‖ = 1. Here, ∂X denotes the
boundary of X, D2

1, the second order partial derivative w.r.t. the first argument,
and D2

1f(x, u)h2 := D2
1f(x, u)(h, h).

The bounds M1 and M2 in Theorem 4 may be directly determined from the
right hand side f of the time-continuous system (1) and the set U of admissi-
ble controls, and the bound (16) on the radius is sharp provided n ≥ 2 [22].
Application of previous results from [30,31,32] would necessarily be based on
estimates of ‖D2ϕ(t, ·, u)−1‖ and ‖D2

2ϕ(t, ·, u)‖ and, in general, would yield a
smaller bound.

Theorem 4 implies that the reachable set ϕ(t, B̄(x0, r), u) is convex whenever
t or r is sufficiently small. Hence, if either the sampling period T , or the system
of level sets of the quantizer (5) can be chosen freely, convexity of reachable sets
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arising in the algorithm proposed in this section, and hence, applicability of the
algorithm, can be guaranteed by either choosing T sufficiently small or choosing
sufficiently small balls as the elements of C ′.

While Theorem 4 gives a sufficient condition for the convexity of a reachable
set, Theorem 5 appears to have the form of a criterion. However, condition (17)
contains the general solution ϕ of (1) and therefore, may only rarely be directly
verified. Instead, one usually has to resort to estimating the integrand on the left
hand side of (17). In the twice continuously differentiable case, use of the estimate
obtained from Ważewski’s inequality [22] would yield precisely the bound (16)
in Theorem 4. The advantage of Theorem 5 is that for specific examples of (1)
one is often able to obtain better estimates for the integrand in (17), and hence,
larger bounds on the radius than (16). This has been demonstrated in [22]. In
view of the algorithm proposed in this section, note that larger bounds directly
translate into lower computational complexity.

As Theorems 4 and 5 extend to right hand sides f defined in arbitrary Hilbert
spaces, convexity of reachable sets from ellipsoids rather than from Euclidean
balls may also be guaranteed [22]. In view of these results, each bounded element
Ω ∈ C of the system C of level sets of the quantizer (5) should be contained in

some ellipsoid Ω̂ whose reachable sets are guaranteed to be convex by Theorems
5 and 4. See items (iv) and (v) of the list of inputs of the algorithm.

5 Example

Consider the pendulum equations

ẋ1 = x2, (18a)

ẋ2 = − sin(x1) − u cos(x1), (18b)

which describe frictionless motion of a pendulum mounted on a cart whose ac-
celeration is u. The motion of the cart is not modeled; u is considered an input.
We seek to design a controller that steers a sampled version of (18) from some
neighborhood of the origin within a finite number of steps into the ellipsoid E
defined by

E = (π, 0) +
{
x ∈ R

2
∣∣ 〈x|Hx〉 ≤ 1

}
, H =

1

10
√

2

(
13 3

√
3

3
√

3 7

)
(19)

and shown in Fig. 3(a), such that the closed loop satisfies the constraints

|x2| ≤ π, (20a)

u ∈ {0,−2, 2}, (20b)

with controls being constant on sampling intervals, i.e.,

U = {[0, T ] → R : t 7→ 0, [0, T ] → R : t 7→ −2, [0, T ] → R : t 7→ 2}

in the notation of section 2.
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Fig. 3. (a) Covering of the state space by cells which defines the quantizer (5). A
discrete controller obtained from a 2-complete abstraction of the behavior of the
the sampled and quantized system (6) steers (6) from any shaded cell into some
of the (unshaded) cells contained in the ellipsoid (19). The labeled points rep-
resent a particular closed-loop solution on the time interval {0, 1, . . . , 10}. (b) A

hexagon Ω ∈ C ′, its circumcircle Ω̂, and a supporting polyhedral approximation
Σ(Ω̂) of Ω̂.

To this end, let U be defined by (2), let ϕ denote the general solution of (18),
and consider the sampled system (4) with sampling period T = 0.35. Define the
quantizer Q of (5) by its system C of level sets (“cells”),

C = C ′ ∪ {R × ]π,∞[ ,R × ]−∞,−π[},

where C ′ is a set of 238 translated and possibly truncated copies of the hexagon

π

14
√

3
conv{(0,−2), (

√
3,−1), (

√
3, 1), (0, 2), (−

√
3, 1), (−

√
3,−1)}, (21)

see Fig. 3(a). Since the right hand side of (18) is periodic in x with period (2π, 0),
we tacitly consider the system (18) on the cylinder, so that C really is a covering
of the state space of (18) and of (4).

For each Ω ∈ C ′, let Ω̂ be a translated copy of the circumcircle of the hexagon
(21), and Σ(Ω̂), a supporting polyhedral approximation of Ω̂ consisting of 8
equally distributed hyperplanes. See Fig. 3(b). The next result shows that the

reachable set ϕ(t, Ω̂, u) is convex for all Ω ∈ C ′, all u ∈ U , and all t ∈ {T, 2T}.
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Table 1. Application of the algorithm proposed in section 4 to the present
example (N : memory span of computed abstraction; s: number of half-spaces
to be determined; q: number of polyhedra tested for emptiness; p: number of
conservative polyhedral approximations of reachable sets to be stored).

N s q p

0 1906 0 240
1 5184 30118 3060
2 21424 70496 22840

Theorem 6. Let x0 ∈ R
2, u piecewise continuous with |u(τ)| ≤ û for all τ ∈

R+, ω =
(
1 + û2

)1/4
, 0 < t ≤ π

2ω ,

R =
6ω2

(1 + ω2)3/2 sinh(ωt) (5 + cosh(2ωt) − 10 exp(−ω))
. (22)

Then the reachable set ϕ(t, B̄(x0, r), u) is convex whenever 0 < r ≤ R.

Indeed, the circumcircle of the hexagon (21) is of radius π/(7
√

3) < 0.26,
while the bound (22) exceeds 0.26 for û = 2 and t ∈ {T, 2T}, and T < 2T < 1 <
π
2

(
1 + û2

)−1/4
. Hence, for memory span N ∈ {0, 1, 2}, all relevant reachable sets

are convex, and Theorem 3 guarantees that the algorithm proposed in section 4
yields a discrete abstraction BN of the behavior of the sampled and quantized
system (6).

We have implemented our algorithm from section 4 in Mathematica 5.2 [33]
and computed BN for N ∈ {0, 1, 2}. Tab. 1 gives some statistics. Note that for
N = 2, the number of half-spaces to be determined is less than the number
of conservative polyhedral approximations of reachable sets to be stored, which
demonstrates an important feature of our method. It took 0.8, 30.2 and 101.6
seconds to compute BN for N = 0, 1, 2, respectively, on an IBM Thinkpad X60
with 1.83 GHz clock rate.

Based on the abstraction B2 and using well-known methods from discrete
mathematics [11,8], we have obtained a discrete controller which, by construc-
tion, steers the sampled and quantized system (6) from any cell shaded in Fig. 3
into some cell inside the ellipsoid E within at most 16 steps, and in particular,
within 10 steps if starting from the origin. See Fig. 3(a). By construction, solu-
tions of the closed loop remain in C ′ before entering E, which guarantees control
and state constraints (20) are satisfied.
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