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Abstract | An extension of the normal tree method

is presented. It applies to linear electrical net-

works that may contain independent and controlled

sources, nullors, ideal transformers, and, under a

topological restriction, gyrators, in addition to re-

sistors, capacitors, and inductors. The proposed

method relies on the concept of normal pair of con-

jugate trees and yields generically full sets of state

coordinates. In addition, networks of generic in-

dex 1 are characterized and a systematic method of

index-1-regularization is proposed.

I. INTRODUCTION

The normal tree method was initially introduced by

Bryant in order to determine full sets of state coordi-

nates of passive RLC networks [1]. It requires to con-

struct a spanning tree that contains a maximal number

of capacitor branches and a minimal number of induc-

tor branches. The voltages of capacitors in that tree

together with currents of inductors not in the tree may

be taken as state coordinates.

Being purely topological, the normal tree method

relys on the fact that properties of RLC networks, such

as solvability and the number of state coordinates, do

not depend on the speci�c choice of the network param-

eters, such as resistances, as long as these parameters

are positive.

On one hand, properties of networks containing nul-

lors or controlled sources do not only depend on the

network topologies, but also on the network parame-

ters. Therefore, it is impossible to give a purely topo-

logical method that yields, say, the number of state co-

ordinates for such a network for a speci�c choice of its

parameters. On the other hand, values of these param-

eters are usually known up to some numerical accuracy

only. Hence, knowledge of properties of a network for a

speci�c choice of its parameters is of restricted practical

importance.

For example, the circuit equations of the network

in Fig. 1 are of index 3 for � = 1. (Inductance L and
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Figure 1: The circuit equations of the linear network

shown are of index 3 if � = 1 and otherwise of index 1.

capacitance C are assumed to be nonzero; for de�nition

of index see [2].) In particular, we have

v̂

2

(s) = �v̂

1

(s)s

2

LC;

where ^ denotes Laplace transform, and hence, the sec-

ond order derivative of the input voltage v

1

enters di-

rectly into the output voltage v

2

. However, if the volt-

age controlled voltage source is a model of a real device,

the value of its parameter � is not exactly known, and

the result that the index will be 3 if � = 1 is just use-

less. Indeed, for all values of the parameter � di�erent

from 1 the index is 1, we have

v̂
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(s) = v̂

1

(s)

s

2

�LC
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(�� 1)LC � 1

;

and the network does not show any di�erentiating be-

havior.

Unfortunately, it is in practice impossible to obtain

properties of networks by symbolic computation, ex-

cept for some small academic examples as that one

above. To overcome that di�culty, one may check if

networks have the property in question for all param-

eter values from an open dense subset of the space of

all parameter values [3{7]. Such a property is called

generic [8], which intuitively means the following: If a

network shows that property for a speci�c parameter
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value, it still shows it after su�ciently small perturba-

tions of that value (\open"). If, on the other hand, the

network does not show the property in question for a

speci�c parameter value, it will show it after arbitrarily

small perturbations of that value (\dense").

In this paper, we present a purely topological ex-

tension of the normal tree method that applies to lin-

ear networks containing independent and controlled

sources, nullors, ideal transformers and, under a topo-

logical restriction, gyrators, in addition to resistors, ca-

pacitors, and inductors. Our results rely on the concept

of pair of conjugate trees [4, 9, 7], and our main result

is as follows: The voltages of tree capacitors together

with currents of co-tree inductors of a normal pair of

conjugate trees determine a generically full set of state

coordinates.

As a consequence of that result, we characterize net-

works with circuit equations of generic index 1, and

a systematic method of index-1-regularization, i.e., a

method of augmentation that yields circuit equations

of generic index 1, is also presented.

We refer to [10] for proofs of our results, since these

are too lengthy to be conveniently given here.

II. PRELIMINARIES

Matrix pencils and linear DAE's

Let A;B 2 L(R

n

;R

n

) be n � n matrices, n 2 N. The

pair (A;B) is called pencil and is regular if there is some

s 2 R that sA +B is regular. Otherwise it is singular.

The pencil (A;B) is of index 1 if the degree in s of the

polynomial det(sA + B) equals the rank of A.

A C

1

-mapping x : I ! R

n

is a solution of the

Di�erential-Algebraic Equation (DAE)

A _x(t) + Bx(t) = q(t) (1)

if it satis�es (1) for all t 2 I and I � R is an open,

not necessarily bounded interval. A vector x

0

2 R

n

is

called state associated with t

0

for (1) if there is some

solution x of (1) such that x(t

0

) = x

0

. (We assume

throughout the paper that q is su�ciently smooth.)

Let (A;B) be regular. Consider a set Z =

fj

1

; j

2

; : : : ; j

r

g � f1; 2; : : : ; ng that contains r elements.

We say that Z determines a full set of state coordinates

of (1) if the components x

0;j

1

; x

0;j

2

; : : : ; x

0;j

r

of states

x

0

may be chosen arbitrarily and uniquely determine

the state.

Let now A and B be parameter dependent n � n

matrices, i.e., A;B : R

k

! L(R

n

;R

n

). The parameter

dependent pencil (A;B) is generically regular and of

generic index 1 if (A(p); B(p)) is regular and of index

1, respectively, for all p from some open dense subset of

R

k

. We also say that Z determines a generically full set

of state coordinates of the linear parameter dependent

DAE

A(p) _x(t) + B(p)x(t) = q(t) (2)

if Z determines a full set of state coordinates of (2) for

all p from some open dense subset of R

k

.

Circuit equations of linear networks

Let N be a linear network that contains resistors, ca-

pacitors, inductors, ideal transformers, gyrators, nul-

lors, and independent sources as well as the types of

controlled sources shown in the �rst row of Table 1.

Let Z = f1; 2; : : : ; bg be the branch set of N , and

denote by p 2 R

k

the vector containing all parameters

of N : Resistances, capacitances, inductances, gains of

controlled sources, transformer and gyrator ratios. The

circuit equations of N have the form
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(3)

where v

1

; : : : ; v

b

and i

1

; : : : ; i

b

denote the branch volt-

ages and currents, respectively, M (p) corresponds to

the voltage-current relations (VCR) of the resistive

branches, and the submatrices A

LC

(p) and B

LC

cor-

respond to the VCR of the reactances. K corresponds

to Kirchhoff's equations and consists of reduced cir-

cuit and cut set matrices. (Hence, A(p) and B(p) are

2b� 2b matrices.)

We emphasize that each parameter p

j

contained in

the matrix M (p), apart from transformer and gyrator

ratios, occurs exactly once, and transformer and gyra-

tor ratios occur exactly twice.

We call the network N generically uniquely solvable

and of generic index 1 if the pencil (A;B) from (3) is

generically regular and of generic index 1, respectively.

Likewise, we say that Z determines a generically full

set of state coordinates of N if Z determines a generi-

cally full set of state coordinates of (3).

Note that a generically uniquely solvable network N

is of generic index 1 i� for all p from some open dense

subset of R

k

, all capacitor voltages and all inductor

currents may be given initial values independent from

each other in order to obtain a unique solution.
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network element

to be replaced

-

q q

q q

-

q q

q q

-

q q

q q

-

q q

q q

q

q

q

q

q

q
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q q

q q

q q

q q

q q

q q

q q

q q

q

q

q

q

q

q

substitution 2

q q

q q

q q

q q

q q

q q

q q

q q

q

q

q

q

q

q

Table 1: Each network element in the �rst row is replaced by the elements in either the second or the third row of the

same column.

(a)

q q

q q

(b)

q q

q q

(c)

q q

q q

(d)

q q

q q

(e)

Figure 2: The gyrator of (a) is substituted by the elements in (b), (c), (d), or (e).

III. NORMAL PAIRS OF CONJUGATE

TREES AND STATE COORDINATES

We �rst extend the term pair of conjugate trees [4,9,

7] to networks that may contain reactances, and modify

it in case the network contains gyrators. We then de�ne

normal pairs of conjugate trees in complete analogy to

normal trees.

The main result of this paper is Theorem III.2, in

which generically full sets of state coordinates are ob-

tained from normal pairs of conjugate trees. Networks

of generic index 1 are characterized in Corollary III.4,

and a systematic method of augmentation that yields

networks of generic index 1 is proposed in Corollary

III.5. Finally, our statements are illustrated by Exam-

ples.

Throughout this paper, a network is a linear net-

work that may contain resistors, capacitors, inductors,

ideal transformers, gyrators, nullors, and independent

sources as well as the types of controlled sources shown

in the �rst row of Table 1.

III.1 De�nition: A pair (t

1

; t

2

) of spanning trees

1

of

the graph of a network N is called a pair of conju-

gate trees if all gyrators, resistors, inductors, capac-

itors, and controlled sources of N can be replaced in

1

We use the terms tree and forest [6] synonymously.

accordance with Table 1 and Fig. 2 such that

(i) t

1

as well as t

2

contain all voltage source branches,

no current source branch, and exactly one branch

of each ideal transformer,

(ii) t

1

contains all norator branches and no nullator

branch,

(iii) t

2

contains all nullator branches and no norator

branch

of the resulting network.

A pair of conjugate trees (t

1

; t

2

) is called normal if

jt

1

\Cj+jLnt

1

j = max

�

jw

1

\Cj+jLnw

1

j

�

�

(w

1

; w

2

) is a

pair of conjugate trees of N

	

holds, i.e., if (t

1

; t

2

) maximizes the sum of the number

of tree capacitors and the number of co-tree inductors

among all pairs of conjugate trees of the network N in

question. �

Note that, in general, t

1

contains other transformer

branches than t

2

.

III.2 Theorem: Let the network N ful�ll the follow-

ing condition:
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(a) (b) (c) (d) (e)

Figure 3: (a) Network investigated in Example III.3. A normal pair (t

1

; t

2

) of conjugate trees is illustrated: The branches

of t

1

and t

2

are shown as thickened solid lines in (b) and (c), respectively. (d) and (e) show the network from (a) after

modi�cation according to Corollary III.5 together with trees t

0

1

and t

0

2

, respectively, of a normal pair of conjugate trees

(t

0

1

; t

0

2

) of the modi�ed network.

(B) There is a partition of the branch set Z of the graph

of N into disjoint subsets Z

1

and Z

2

such that B

1

through B

3

hold.

(B

1

) If Z

c

is the branch set of a circuit of the graph

of N , then either Z

c

� Z

1

or Z

c

� Z

2

.

(B

2

) Let z

1

and z

2

be the branches of a gyrator of

the network. Then either z

1

2 Z

1

and z

2

2

Z

2

, or z

1

2 Z

2

and z

2

2 Z

1

.

(B

3

) Let z

1

and z

2

be the branches of an ideal

transformer of the network. Then either

fz

1

; z

2

g � Z

1

or fz

1

; z

2

g � Z

2

.

Then N is generically uniquely solvable i� it has a pair

of conjugate trees. Further, if (t

1

; t

2

) is a normal pair

of conjugate trees of N , then the voltages of capacitors

in t

1

together with the currents of inductors not in t

1

determine a generically full set of state coordinates of

N . �

Note that condition (B) above is automatically ful�lled

if the network in question does not contain gyrators.

If the network does contain gyrators, condition (B)

is often easy to check. For example, if the network

consists of both electrical and mechanical components,

that condition is ful�lled if for any ideal transformer,

the two transformer branches are either both electrical,

or both mechanical, and for any gyrator, exactly one

branch is electrical. (The latter is actually ful�lled for

a large class of electro-mechanical networks.)

Finally, note that one cannot overcome condition (B)

by substituting gyrators by appropriate subnetworks

containing, say, controlled sources. The parameters,

e.g. gains of controlled sources, of such a subnetwork

would not be independent from each other. Hence,

Theorem III.2 will not apply to the resulting network.

III.3 Example: The network shown in Fig. 3(a) is a

modi�cation of the network from [7, Fig. 2.3]. It ful-

�lls condition (B) in Theorem III.2, since it does not

contain gyrators.

Since (t

1

; t

2

) = (f1; 3; 5; 8g;f1;2;4;8g) is a pair of

conjugate trees, that network is generically uniquely

solvable. It is easy to see that the capacitor branch 7

cannot be contained in any pair of conjugate trees, and

hence, the pair (t

1

; t

2

) is even normal. Thus, the cur-

rent of the inductor branch 6 determines a generically

full set of state coordinates. �

Of special interest is the case where all capacitor volt-

ages and inductor currents represent state coordinates.

The following results characterize that situation and

also provide a systematic method to augment the net-

work in order to obtain circuit equations of index 1.

III.4 Corollary: Let the network N ful�ll condition

(B) in Theorem III.2 and let C and L be the sets of

capacitor and inductor branches of N , respectively.

Then the following statements are equivalent.

(i) N is generically uniquely solvable and of generic

index 1.

(ii) The network obtained from N by substituting all

capacitors and inductors by independent voltage

and current sources, respectively, is generically

uniquely solvable.

(iii) The voltages of all capacitors together with the cur-

rents of all inductors of N determine a generically

full set of state coordinates.

(iv) N has a pair of conjugate trees (t

1

; t

2

) with C � t

1

and L \ t

1

= ;. �

III.5 Corollary: Let N be a generically uniquely solv-

able network that ful�lls condition (B) in Theorem

III.2. Let further (t

1

; t

2

) be a pair of conjugate trees

of N and let N

0

be the network that is obtained from

N as follows:

(i) Augment N with either a resistor or an inductor

in series to each capacitor not in t

1

.
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Figure 4: Network investigated in Example III.8. Its cir-

cuit equations are of index 4 if � = 1 and otherwise of index

2.

(ii) Augment N with either a resistor or a capacitor

in parallel to each inductor in t

1

.

Then N

0

is generically uniquely solvable and of generic

index 1. �

III.6 Example: The normal pair of conjugate trees

of the network from Fig. 3(a) that was found in Ex-

ample III.3 did not contain the capacitor branch 7.

By Cor. III.4, that network is not of generic index 1.

Fig. 3(d) and Fig. 3(e) show a modi�cation of the net-

work from Fig. 3(a) according to Cor. III.5 and illus-

trate a normal pair of conjuagte trees of the modi�ed

network. (Note that an inductor could have been in-

serted instead of the resistor.) �

III.7 Example: The network shown in Fig. 1 has a

normal pair of conjugate trees (t; t), where t consists

of the C-branch, the output branch of the controlled

source, and the branch of the independent source.

Hence, that network is of generic index 1, as already

stated in the Introduction. �

III.8 Example: The network of Fig. 4 has a pair of

conjugate trees (t; t), where t consists of the C

1

-branch,

the output branch of the controlled source, and the

branch of the independent source. Since the C

2

-branch

cannot be in any pair of conjugate trees, the pair (t; t)

is normal, and that network is not of generic index 1.

Augmenting it with a resistor or an inductor in series

to the C

2

-branch yields a network of generic index 1.

(Note that, if L, C

1

, and C

2

are nonzero, the circuit

equations (3) of the network shown in Fig. 4 are of

index 2 i� � 6= 1. Otherwise, they are of index 4.) �

IV. CONCLUSIONS

A necessary and su�cient condition for generic unique

solvability of networks has been given, networks of

generic index 1 have been characterized, generically full

sets of state coordinates have been obtained, and a sys-

tematic method of augmentation that yields networks

of generic index 1 has been proposed.

The results of this paper are applicable to linear elec-

trical networks that may contain independent and con-

trolled sources, nullors, ideal transformers and, under

a topological restriction, gyrators, in addition to resis-

tors, inductors, and capacitors.

Our main result, expressed in terms of pairs of con-

jugate trees, appears as a generalization of the well-

known normal tree method to linear active networks.

Although the latter had been extended in various di-

rections earlier (see [11{15, 9, 5{7] and references cited

therein), all these extensions impose serious restrictions

on the network which concern the network topology as

well as the class of admissible network elements. For

example, the author does not know of any earlier result

that �nds state coordinates of networks that contain

both nullors and ideal transformers.

Further research should be devoted to how far local

properties of nonlinear networks can be obtained from

generic properties of their linear counterparts.
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