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ABSTRACT 

Linear and nonlinear networks composed of independent 
sources, resistive, capacitive and inductive subnetworks, as 
well as ideal transformers and gyrators (RLCTG-networks) 
are investigated. Branches may be arbitrarily coupled within 
the resistive, capacitive and inductive subnetworks and these 
subnetworks may be non-reciprocal. It is shown that the 
tractability index of the standard circuit equations of such 
networks does not exceed 2, provided that the resistance, 
capacitance, and inductance matrices of the subnetworks 
are positive definite. 

1. INTRODUCTION 

Many technical processes and systems, including electrical 
networks, may be modelled by Differential-Algebraic Equa- 
tions (DAE’s) of the type 

In particular, circuit equations created within modern sim- 
ulation programs are of form (1). 

Knowing the index [I, 21 of (1) would be a great ad- 
vantage for several reasons: Numerical solution of (1) is, 
as a rule, the more complicated the higher its index is. In 
case the index exceeds 2, typical problems to expect are 
extremely small stepsizes a.nd simnlation interrupts caused 
by exceptions in numerical routines, and choosing an appro- 
priate numerical algorithm is easier if the index is a priori 
known [l]. 

Further, if (1) describes the dynamic behavior of an 
electrical circuit, the index determines how many input 
derivatives enter the solution, a question of high practical 
importance [3]. Therefore, there has been much effort at  
computing the index of linear [4-61 as well as nonlinear [7] 
DAE’s. 

To ask for the index of whole classes of DAE’s is a much 
deeper and more difficult question, and for very few classes 
of electrical networks there have been given answers: Al- 
though the term ‘index’ is not used therein, one can con- 
clude from the results of [8] that the index of the circuit 
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equations of linear networks containing positive valued, un- 
coupled resistors and capacitors and coupled inductors hav- 
ing positive definite inductance matrices is either 1 or 2. 
Further, the index is 2 iff there is a capacitor-only loop or 
an inductor-only cut set. Later, the same was shown for the 
tableau equations of linear connected networks containing 
independent voltage sources and time-varying, uncoupled, 
positive valued resitors and capacitors [lo]. Here, the index 
is two iff there is a loop consisting of voltage sources and 
capacitors only. Only recently, it was shown that the index 
of the MNA equations of nonlinear RLC networks contain- 
ing coupled resistors, capacitors and inductors with positive 
definite resistance, capacity, and inductivity matrix, respec- 
tively, does not exceed 2, and an index-l-criterion has been 
given for these networks [ll]. 

In this paper, we are concerned with linear as well as 
nonlinear RLCTG-networks, Le., networks that are com- 
posed of independent sources, resistive, capacitive and in- 
ductive subnetworks, as well as ideal transformers and gy- 
rators. We emphasize that branches may be arbitrarily cou- 
pled within the resistive, capacitive and inductive subnet- 
works and that we do not assume these subnetworks to be 
reciprocal. We show that the index of the standard circuit 
equations of such networks does not exceed 2, provided that 
the resistance, capacitance, and inductance matrices of the 
subnetworks are positive definite, and also give an index-l- 
criterion. The latter is different from that in [Ill since the 
index of the standard circuit equations considered here may 
differ from that of the MNA equations considered in [ll]. 

Our main contribution is that we include ideal trans- 
formers and gyrators as admissible network elements. This 
is not only of theoretical, but also of practical value: As a 
rule, networks describing systems composed of both electri- 
cal and mechanical parts contain transformers and gyrators. 
In that case, non of the known results on the index of the 
circuit equations are applicable. In view of what was said 
at  the beginning on the importance of the index for the nu- 
merical behavior of DAE’s, this is a serious lack of a priori 
information if such networks should be simulated. 

Finally, we emphasize that our results hold for all net- 
works having the required properties above. Even in the 
linear case, this is in contrast to approaches focussing on 
generic properties [4,5], which yield results that hold only 
for almost all  values of network parameters, e.g. resistances. 
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2 .  THE LINEAR CASE 

Let n/ be a linear RLCTG-network that consists of the 
elements shown in Table 1. The circuit equations of d may 
be stated in the form 

- - 
A:=  B: = 

where V I , .  . . ,vb and 2 1 , .  . . , i b  denote the branc 
and currents, respectively, M corresponds to the voltage- 
current relations (VCR’s) of the resistive branches, and the 
submatrices ALC and BLC correspond to the VCR’s of the 
reactances. h‘ corresponds to Kirchhoff’s equations and 
consists of reduced circuit and cut set matrices. 

Table 1 shows the admissible types of elements and also 
represents their VCR’s in the same form as they enter the 
matrices M ,  ALC, and BLC of (2). (Throughout the paper 
we assume that p is of class C’.) 

By introducing a charge vector q and a flux vector p, 
we can clearly substitute the VCR’s 

cvc - ic = n, hiL - vz = o 

of capacitors and inductors 

i - i c = n ,  y - v z = o ,  
p - Lirz = 0 q - c v c  = 0 ,  

and come to 

The latter are the standard circuit equations [9] of N.  
The network n/ is uniquely solvable if the pencil (A, B )  

from the circuit equations ( 2 )  is regular, Le., if there is some 
s E R such that S A  + B is regular. (Note that the pencil 
(A,  B )  from ( 2 )  is regular iff the pencil ( X I  5) from (3) is.) 

For each regular pencil (A,  B ) ,  there are regular matri- 
ces P and Q such that 

A = Pdiag(id,, N ) Q  and B = Pdiag(W,id,-,)Q, 

where id, is the j x j identity matrix for any j ,  0 5 r 5 n, 
W i s r x r ,  and Nisani lpoten t  ( n - r ) x ( n - r ) m a t r i x .  The 
number r as well as the nilpotency index of N are uniquely 
determined by ( A ,  B ) ,  and the latter is called index of the 
pencil (A,  B ) ,  or equivalently, index of (2 ) .  Likewise, the 
index of the standard circuit equations (3)  is the index of 
the pencil (A, 5). 

Our main result on linear RLCTG-networks is the fol- 
lowing: 

L .  i - - v = O  

V I  + g i z =  0 
vz - gi1= 0 

Table 1: Admissible network elements of linear RLCTG- 
networks and a representation of their voltage-current re- 
lations in the same form as they enter the matrices M ,  A L C ,  
and BLC of (2).  (In case of resistors, capacitors and induc- 
tors, the symbols w and i denote vectors and R, L and C 
denote matrices.) 
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2.1 Theorem: Let  JV be a linear RLCTG-network that 
consists o f  the elements shown in Table I .  As sume  that n/ 
is  uniquely solvable and that the  resistance, capacitance and 
inductance matrices o f  the resistive, capacitive and induc- 
t ive,  respectively, subnetworks contained in are positive 
definite. T h e n  the  folowing hold: 

(2) 

( i i )  

( i i i )  

T h e  index  o f  the circuit equations (2)  of N i s  either 
1 or  2 and coincides with the index of the standard 
circuit equations (9) of N .  

T h e  index  of the circuit equations ( 2 )  of N is 1 iff the 
network tha t  is  obtained f r o m  N by replacing all ca- 
pacitive branches by independent voltage sources and 
all inductive branches by  independent current sources 
is  uniquely solvable. 

If  the network N does neither contain gyrators nor  
ideal transformers,  i.e., i f  N is a n  RLC-network,  
t hen  the index  of the circuit equations (2)  of JV is 
1 i f f  there is  some  spanning forest  containing all volt- 
age sources, all capacitors, n o  current source and no  
inductor.  

Proof (sketch): Let (2) be uniquely solvable. Then 
the index of ( 2 )  is 1 iff the matrix 

is regular, which immediately proves (ii). Assume now that 
AI is not regular. I t  can be shown that the index of (2) is 2 
iff Az  = 0 A 3,  ( B x  = A y  A B y  E im A )  implies x = 0 [la]. 
For simplicity, write x = ( z v ,  x ')  and 

where z" (resp. 2') is the vector of branch voltages (resp. 

x &  (resp. X I , ,  x:, x k ,  x i ,  z&, z&, x & )  are the vectors 
of branch voltages (resp. currents) of the voltage sources, 
current sources, resistors, capacitors, inductors, ideal trans- 
formers, and gyrators. 

By means of TELLEGEN'S Theorem, we conclude from 
B x  E i m A ,  Ax = 0 and positive definitness of the resis- 
tance, capacitance and inductance matrices that x g  = 0, 
x i  = 0 ,  and x g  = x &  = 0. 

From B x  = A y ,  B y  E im A, TELLEGEN'S Theorem, and 
positive definitness we conclude x &  = 0 and X K  = 0,  which 
implies BLCE = 0. From A l x  = 0 we conclude A x  = B x  = 
0 ,  which implies z = 0 since (A ,  B )  is regular. 

It may be shown by the shuffle algorithm [13] that the 
indices of ( A ,  B )  and (A, E )  coincide, which proves (i). 

For the proof of (iii), note that  A1 is the coefficient 
matrix of the circuit equations of some linear passive R- 
network and that  unique solvability of such a network de- 

0 

currents) of the network and x; ,  x y ,  X L ,  zx, x c ,  v v  zT, 

pends on the network topology only. 

3. THE NONLINEAR CASE 

We now consider nonlinear networks composed of indepen- 
dent sources, nonlinear resistive, capacitive and inductive 
subnetworks, and, although unusual, nonlinear transform- 
ers and gyrators. In analogy to  the equations in Table 1, 
these nonlinear network elements are described as follows: 

Independent voltage and current sources are described 
by 

v ( t )  = d t ) ,  i ( t )  = d t ) ,  ( 5 )  

respectively. Resistive subnetworks are described by 

R(2) - v = 0, (6) 

where R is a mapping Iw' --+ Iw' and v = ( V I , .  . . ,211)  and 
i = (21 , . . . , il). Capacitive and inductive subnetworks are 
described by 

(7) q - i = O ,  q - Q ( v ) = O ,  

and 

(j - v  = 0, $ 9 -  @(i) = 0, (8) 

respectively, where p = ( q l ,  . . . , q l )  denotes the charge and 
$9 = ($91,. . . , $ 9 1 )  is the flux. Q and 6, are mappings R' + 
R', and Q'(IJ)  and @'( i )  are the (differential) capacitance 
and inductance, respectively. Ideal transformers are de- 
scribed by 

n(v1 )  - v2 = 0 ,  il + n(i2)  = 0, (9) 

where n :  R + R. The equations of the gyrator are 

VI + g( i2)  = 0, 0 2  - g( i1 )  = 0. (10) 

Equations (5)-(10) together with Kirchhoff's equations 

If. ( u ,  2 )  = 0 (11) 

are the standard circuit equations [9] of nonlinear RLCTG- 
networks. These equations are of form 

A? - g ( x )  = d t ) ,  (12) 

a special case of the DAE (1). Here, z = ( v ,  i, q ,  9 )  and 
v is the vector of all branch voltages, i is the vector of all 
branch currents, q is the vector of all capacitor charges, and 
$9 is the vector of all inductor fluxes. 

In contrary to  the linear case, there are several concepts 
of index for nonlinear DAE's. In this paper we rely on the 
concept of tractability index  [14,11]: 

3.1 Definition: Assume  that g and q of (12) are de5ned 
o n  open sets X C R" and T C R, respectively, and that 
these mappings are of class C1. 
T h e n  the index of (12 )  is  1 o n  some open set  V E X x T 
if  the index of ( A , g ' ( x ) )  is 1 f o r  all ( x , t )  E V. 
The  index of (12)  is 2 o n  some open set V X x T i f  the 
index of ( A , g ' ( x ) )  i s  2 f o r  all ( x ,  t )  E V and the d imens ion  
of  

k e r A n { y E R "  I g ' ( z ) y E i m A }  
is constant o n  V .  0 
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3.2 Theorem: Let N be a nonlinear RLCTG-network de- 
scribed b y  its standard circuit equations (12) consisting of 
the equations (5)-(11), and assume that g and q of (12) are 

Assume further that the linearization ofn/ at some point 
xo = (VO, io, qo, PO) fullfills the hypotheses of Theorem 2 . 4  
Le., let the pencil (A ,  g‘(z0)) be regular and let the differen- 
tial resistance, capacitance and inductance matrices R’(io), 
Q’(v0) and @ I ( & ) ,  respectively, be positive definite. Then  
the following hold: 

of class c1 1 

( i )  The  index of the pencil ( A ,  g’(z0)) is either 1 or 2.  

( i i )  If the index of the pencil (A,g’(so)) is 1 ,  then the 
index of the standard circuit equations (12) of N is 1 
o n  some open neighborhood of XO. 

(i i i)  If the standard circuit equations (12)  of N have a n  
index o n  some open neighborhood o f  20, that index 
equals the index of the pencil (A ,  g’(z0)). 

(iv) If the network n/ does neither contain gyrators nor 
ideal transformers, Le., if N‘ is a n  RLC-network, 
then the standard circuit equations (12) of n/ have 
an index o n  some open neighborhood of so, That in- 
dex is 1 iff there is some spanningforest  containing 
all voltage sources, all  capacitors, no current source 
and no  inductor. 0 

ProoE (i) follows from the fact that (A,g’(xo)) is the 
pencil of the standard circuit equations of some linear net- 
work that meets the requirements of Theorem 2.1, and (ii) 
and (iii) follow directly from Definition 3.1. 

In order to show (iv), we perform one step of the shuffle 
algorithm and obtain some matrix Al(z )  analogous to (4). 
The rank of A l ( z )  does not depend on z, since A I ( x )  is the 
coefficient matrix of the standard circuit equations of some 
passive R-network and the dimension of the solution space 
of such a network depends on the network topology only. 

0 

4. CONCLUSIONS 

It has been shown that the tractability index of the standard 
circuit equations of linear as well as nonlinear RLCTG- 
networks does not exceed 2, provided that the resishnce, 
capacitance, and inductance matrices of the subnetworks 
are positive definite. We emphasize that branches may be 
arbitrarily coupled within the resistive, capacitive and in- 
ductive subnetworks and that we do not assume these sub- 
networks to  be reciprocal. 

Further, criteria for the standard circuit equations to be 
of index 1 have been given. 

For networks that contain at  least one ideal transformer 
or gyrator, the following problems remain open: Is there a 
purely topological criterion for the standard circuit equa- 
tions to  be of index l? Does the tractability index neces- 
sarily exist under the hypotheses of Theorem 3.2? 
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