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Abstract | We consider di�erential equations

A(x) _x = g(x), where A is an n � n-matrix of C

1

-

functions and g is C

1

. We investigate the above

di�erential equation about singular points x

0

that

are standard in the sense of Rabier. In particu-

lar, the null space of A(x

0

) is of dimension 1. We

show that there is a C

1

-di�eomorphism that trans-

forms the above equation about x

0

into x

1

_x

1

= �1,

_x

2

= � � � = _x

n

= 0 about 0.

I. INTRODUCTION

Many technical systems and processes may be modelled

by implicit di�erential equations

A(x) _x = g(x); (1)

where A : U ! L(R

n

;R

n

) 2 C

1

is a matrix of C

1

-

functions, g : U ! R

n

2 C

1

, and U � R

n

is open.

Whenever A(x

0

) is regular, the above implicit di�er-

ential equation (1) is equivalent to the explicit ordinary

di�erential equation

_x = A(x)

�1

g(x) (2)

in some neighborhood of x

0

, and the usual existence

and uniqueness results apply [1].

If A is not regular, these results do not apply, and

the only known way to analyze (1) is to apply some

index reduction method [2, 3, 4]. In many cases, that

method yields another di�erential equation of form (1)

with A regular everywhere.

In certain applications such as metal forming pro-

cesses [5], uid ows [6, 7], and nonlinear networks hav-

ing impasse points [8], the matrix A of the di�erential

equation (1) that is obtained by the above mentioned

reduction method is neither regular nor of constant

rank. It is exactly that latter case that is studied in

the present paper.

�

This work was supported by Deutsche Forschungsgemein-

schaft, Sonderforschungsbereich 358, Teilprojekt D5.

Rabier was the �rst to investigate the behavior of

(1) for n > 1 in case A is not of constant rank and no

further index reduction is feasible [9]. He considered

standard singular points, i.e., points x

0

that ful�ll the

following conditions:

(S

1

) dimkerA(x

0

) = 1,

(S

2

) g(x

0

) =2 imA(x

0

),

(S

3

) A

0

(x

0

)kk =2 imA(x

0

) for all k 2 kerA(x

0

) n f0g.

(ker, im, and dim denote the null space, the image,

and the dimension, respectively.) Under the additional

assumptions A 2 C

2

and g 2 C

2

it was shown that

there is some neighborhood U

0

� U of x

0

such that the

following holds:

(i) S \ U

0

is a C

1

-submanifold of R

n

of dimension

n� 1, where

S = fx 2 U j A is singular g (3)

is the set of singular points of (1).

(ii) All points of S \ U

0

are standard singular points.

(iii) For any x 2 S \U

0

there are exactly two solutions

that converge to x for t! 0; no solution passes x.

(iv) The derivative of any solution that converges to a

point x 2 S \ U

0

blows up near x.

While a network exhibiting standard singular points

will be given in Section III, let us �rst consider the

simple di�erential equation

x

1

_x

1

= �;

_x

2

= 0;

.

.

.

_x

n

= 0

(4)

with � 2 f1;�1g in some neighborhood of 0. The set of

singular points is the hypersurface de�ned by x

1

= 0,
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all singular points are standard, and (i) and (ii) above

hold with U = U

0

= R

n

. (See Fig. 1(a) for illustration.)

For � = �1 and any x

0;2

; : : : ; x

0;n

,

x

1

(t) = �

p

�2t;

x

2

(t) = x

0;2

; (5)

.

.

.

x

n

(t) = x

0;n

(6)

de�nes exactly two solutions for t < 0, and for � = 1

and any x

0;2

; : : : ; x

0;n

,

x

1

(t) = �

p

2t

together with (5) : : : (6) also de�nes exactly two solu-

tions for t > 0. No other solutions exist, except trans-

lations of the above solutions in time, and hence, (iii)

and (iv) above also hold here.

It is the objective of the present paper to show

that any di�erential equation of form (1) considered in

some neighborhood of a standard singular point may be

transformed by a C

1

-di�eomorphism into (4) in some

neighborhood of 0. That result together with a sketch

of its proof is stated in Section II, and Section III con-

tains an application.

II. MAIN RESULT

II.1 Theorem: Let x

0

be a standard singular point of

(1). Let further k 2 kerA(x

0

) n f0g, u 2 (imA(x

0

))

?

n

f0g, and

� = sign (hujg(x

0

)i � hujA

0

(x

0

)kki) ;

where h�j�i is the inner product in R

n

and (imA(x

0

))

?

is the orthogonal complement of imA(x

0

).

Then there are open neighborhoods U

0

and

~

U

0

of x

0

and 0, respectively, and a C

1

-di�eomorphism �: U

0

!

~

U

0

such that a mapping x with values in U

0

is a solution

of (1) i� � � x is a solution of (4). �

Proof (sketch): Our hypotheses imply that � is

nonzero and independent of k and u. We assume with-

out loss of generality x

0

= 0, u = (adjA(0))

T

k and k =

adj(A(0))g(0) = (1; 0; : : : ; 0), which could be achieved

by an a�ne coordinate transformation that does not

change �. For convenience, we set f(x) = detA(x).

The �rst trick of our proof is to consider the di�er-

ential equation

f(x) _x = adj(A(x))g(x) (7)

rather than (1), where adj denotes the transpose of the

matrix of cofactors. Then x

0

is a standard singular

point of (1) i� f(x

0

) = 0 and

0 6= f

0

(x

0

) adj(A(x

0

))g(x

0

): (8)

Further, in some neighborhood of x

0

, (7) has exactly

the same solutions as (1) [9].

The second trick is to apply the Straightening Out

Theorem [1, Satz 19.1] to

_x = adj(A(x))g(x): (9)

This yields a di�eomorphism 	 with 	

0

(0) = id (id is

the identity mapping) that transforms (7) into

f(	(x)) _x

1

= 1;

_x

2

= 0;

.

.

.

_x

n

= 0:

(10)

(Trajectories of (10) are illustrated in Fig. 1(b).)

Next, the set S is straightened: (8) implies D

1

(f �

	)(0) 6= 0. Hence, by the Implicit Function Theo-

rem, there is a C

1

-mapping � de�ned on some neigh-

borhood of 0 2 R

n�1

such that f(	(x)) = 0 i�

x

1

= �(x

2

; : : : ; x

n

). Obviously then, the mapping

(x

1

; x

2

; : : : ; x

n

) 7! (x

1

� �(x

2

; : : : ; x

n

); x

2

; : : : ; x

n

)

is a local di�eomorphism; we denote its inverse by �.

The di�eomorphism � transforms (10) into

~

f (x) _x

1

= �;

_x

2

= 0;

.

.

.

_x

n

= 0;

(11)

where we have set

~

f(x) = �f(	(�(x))). Now, in some

neighborhood of 0,

~

f(x) = 0 i� x

1

= 0 . (Trajectories

of (11) are illustrated in Fig. 1(c).)

The last step of the proof is to show that

�(t; p) = sign(t)

s

2

Z

t

0

~

f (�; p)d�

is a solution of the di�erential equation

�

_

� =

~

f(t; p); (12)

where

_

� means D

1

� and p 2 R

n�1

is a parameter. We

will show that � 2 C

1

; it is then obvious that (12) is

ful�lled:
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Figure 1: Illustration of trajectories in case n = 2 and � = �1. (a) Trajectories of (4). (b),(c) Trajectories of (10) and

(11), respectively.

First, one can show sign(D

1

f(0)) = �, which implies

D

1

~

f (0) = �

2

= 1 > 0, and hence, the de�nition of �

makes sense. The Taylor formula

~

f(t; p) =

Z

1

0

D

1

~

f (�t; p)t d� (13)

yields

j�(t; p)j �M

0

jtj (14)

for some M

0

> 0 and all t and p su�ciently small.

Obviously, �(0; �) = 0, and for t 6= 0 we have

D

1

�(t; p) = j

~

f(t; p)j � j�(t; p)j

�1

and

D

2

�(t; p) = sign(t)

Z

t

0

D

2

~

f (�; p) d� � j�(t; p)j

�1

:

Let now (0; p

0

) 2 U and " > 0. From (13) we obtain

�

�

�

~

f (t; p)�D

1

~

f (0; p

0

)t

�

�

�

� "jtj

and

�

�

�

�

Z

t

0

~

f (�; p) d� �

1

2

D

1

~

f (0; p

0

)t

2

�

�

�

�

� "t

2

for all t and p� p

0

su�ciently small, which yields

lim

t!0

�

2

t

2

Z

t

0

~

f(�; p

0

) d�

�

= D

1

~

f (0; p

0

);

and hence D

1

�(0; p

0

) =

�

D

1

~

f (0; p

0

)

�

1=2

.

Further, from D

2

~

f (0; p

0

) = 0 and continuity of D

2

~

f ,

we obtain

�

�

�

�

Z

t

0

D

2

~

f(�; p)h d�

�

�

�

�

� "jtj khk (15)

for su�ciently small t and p� p

0

. (15) and (14) yield

jD

2

�(t; p)hj � M

1

"khk for su�ciently small t and p�p

0

and some M

1

> 0, which implies continuity of D

2

� at

the point (0; p

0

).

It remains to show that D

1

� is continuous at (0; p

0

):

For t and p� p

0

su�ciently small and t 6= 0 we have

jD

1

�(t; p) �D

1

�(0; p

0

)j =

�

�

�

�

�

j

~

f(t; p)j

j�(t; p)j

�D

1

�(0; p

0

)

�

�

�

�

�

�

�

�

�

j

~

f (t; p)j �D

1

~

f(0; p

0

)jtj

�

�

�

j�(t; p)j

+

�

�

�

�

�

D

1

~

f (0; p

0

)jtj

j�(t; p)j

�D

1

�(0; p

0

)

�

�

�

�

�

�

"jtj

M

0

jtj

+D

1

�(0; p

0

)

�

�

�

�

�

�

�

�

D

1

~

f (0; p

0

)t

2

�

1=2

�

2

R

t

0

~

f (�; p) d�

�

1=2

� 1

�

�

�

�

�

�

�

�

"

M

0

+D

1

�(0; p

0

)

�

�

�

D

1

~

f(0; p

0

)t

2

� 2

R

t

0

~

f(�; p) d�

�

�

�

2

R

t

0

~

f (�; p) d�

�

"

M

0

+D

1

�(0; p

0

)

2"t

2

M

2

0

t

2

:

Since D

1

�(0; 0) > 0, the mapping � de�ned by

�(x

1

; x

2

; : : : ; x

n

) = (�(x

1

; x

2

; : : : ; x

n

); x

2

; : : : ; x

n

)

1050



t

t t

H
i

D

v

D

+

{

v

C

+ {

Figure 2: Network investigated in Section III.

is a local di�eomorphism. It is easily shown that �

eventually transforms (11) into (4), since � is a solution

to the di�erential equation (12). The di�eomorphism

� sought is (	 �� ��

�1

)

�1

. �

III. EXAMPLE

The network from [8, Example IV.4.], shown in Fig. 2,

contains a capacitor of capacitance 1, an inductor of

inductance 1, and a tunnel diode. It is described by

the equations

_v

C

= i

D

; (16)

_

i

D

= �v

C

� v

D

; (17)

0 = i

D

� v

3

D

+ 9v

2

D

� 24v

D

; (18)

where (18) represents the voltage current relation of

the tunnel diode.

In this Example, an index reduction may be per-

formed as follows: By di�erentiating (18) we see that

any solution of (16)-(18) ful�lls

_v

C

= v

3

D

� 9v

2

D

+ 24v

D

(19)

3 _v

D

(6v

D

� v

2

D

� 8) = v

C

+ v

D

: (20)

Conversely, if (v

D

; i

D

) is a solution of (19)-(20), then

(v

C

; v

D

; i

D

) with

i

D

(t) = v

D

(t)

3

� 9v

D

(t)

2

+ 24v

D

(t)

is a solution of (16)-(18), and hence, the system (19)-

(20) completely describes the behavior of (16)-(18).

If we write (19)-(20) in the form (1) we have

A(v

C

; v

D

) =

�

1 0

0 3(6v

D

� v

2

D

� 8)

�

and

g(v

C

; v

D

) =

�

v

3

D

� 9v

2

D

+ 24v

D

v

C

+ v

D

�

:

Obviously, A(v

C

; v

D

) is singular i� v

D

2 f2; 4g, i.e.,

the set of singular points is

S = R� f2; 4g:

Further, we have

kerA(v

C

; v

D

) = f0g �R;

imA(v

C

; v

D

) = R� f0g;

A

0

(v

C

; v

D

)kk =

�

0 0

0 3(6� 2v

D

)

�

k

=

�

0

6(3� v

D

)

�

=2 imA(v

C

; v

D

);

and � equals the sign of

��

0

1

�

j

�

v

3

D

� 9v

2

D

+ 24v

D

v

C

+ v

D

��

�

��

0

1

�

j

�

0

6(3� v

D

)

��

;

that is,

� = � sign

�

(v

C

+ v

D

)(3� v

D

)

�

(21)

for k =

�

0

1

�

and u =

�

0

1

�

and all (v

C

; v

D

) 2 S n

f(�2; 2); (�4; 4)g. Hence, all singular points except

(�2; 2) and (�4; 4) are standard. (The latter are points

of the set N

 

of [10].) In particular, it follows from (21)

and Theorem II.1 that exactly two solutions converge

at �nite time to any point (v

C

; v

D

) with v

D

= 2 and

v

C

6= �2, where convergence is for increasing time if

v

C

< �2 and for decreasing time if v

C

> �2. This is

illustrated in Fig. 3.
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Figure 3: Trajectories of the system (19)-(20).

IV. CONCLUSIONS

It has been shown that any implicit di�erential equa-

tion A(x) _x = g(x) about a standard singular point

in the sense of Rabier may be transformed by a

C

1

-di�eomorphism into the normal form x

1

_x

1

= �1,

_x

2

= � � � = _x

n

= 0 about 0. This result is new and pro-

vides a deeper understanding of sytems' behavior near

standard singular points. In particular, the results of

[9] follow from the above normal form.

Our approach does not work for singular points that

are not standard. For example, the system (19)-(20)

about the points (�2; 2) and (�4; 4) cannot be trans-

formed into our normal form. The importance of stan-

dard singular points is that the fact that a trajectory

eventually meets such a point is not a�ected by small

perturbations of either the initial value or the system

itself.
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