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Abstract

Under appropriate assumptions, it is shown that there is a di�eomorphism

that transforms solutions of the implicit di�erential equation

A(x) _x = g(x) (1)

near points at which A is singular into solutions of the normal form

x

r

1

_x

1

= �;

_x

2

= 0; : : : ; _x

n

= 0

(2)

near 0, and vice versa, where � = �1 = const. In particular, standard singular

points in the sense of Rabier correspond to r = 1 in (2). A practical example

leading to the normal form (2) with r = 2 is also given.

1 Introduction

Many technical systems and processes may be modelled by implicit di�erential equations

(1), where A : U ! L(R

n

;R

n

) 2 C

1

is a matrix of C

1

{functions, g : U ! R

n

2 C

1

,

U � R

n

is open, and n 2 N. Whenever A is regular at some point x

0

2 U , the above

implicit di�erential equation (1) is locally equivalent to the explicit ordinary di�erential

equation _x = A(x)

�1

g(x) in some neighborhood of x

0

, and the usual existence, uniqueness

and smoothness results apply.

If A(x

0

) is not regular, these results do not apply, and the analysis of (1) near x

0

becomes more di�cult. For example, it may happen that the set of points at which A is

singular forms an (n� 1){dimensional submanifold of R

n

containing x

0

. This case, which

is the concern of the present paper, was �rst studied by Rabier for n > 1 [Rab89]. He

considered standard singular points, i.e., points x

0

that ful�ll the following conditions:

(S

1

) dim kerA(x

0

) = 1,

(S

2

) g(x

0

) =2 imA(x

0

),

(S

3

) A

0

(x

0

)kk =2 imA(x

0

) for all k 2 kerA(x

0

) n f0g.
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(ker, im, and dim denote the null space, the image, and the dimension, respectively,A

0

(x

0

)

denotes the derivative at x

0

of the mapping A : U ! L(R

n

;R

n

) from (1).)

Under the above assumptions, it was shown in [Rab89] that the set of points at which

A is singular forms an (n� 1){dimensional submanifold of R

n

locally near x

0

. Further, �

de�ned by

� = sign (hujg(x

0

)i � hujA

0

(x

0

)kki) (3)

is nonzero and does neither depend on k, nor on u, provided k 2 kerA(x

0

) n f0g and

u 2 (imA(x

0

))

?

nf0g. (Here,

?

denotes the orthogonal complement and h�j�i is the usual

inner product in R

n

.)

If � = �1, the standard singular point x

0

is called attracting, and if � = 1, it is called

repelling. It was also shown that the set of standard singular points forms an (n � 1){

dimensional submanifold of R

n

, that no solution passes x

0

, and that all solutions are

transversal to the submanifold of standard singular points in the sense of [Rab89].

Rabier reduced the analysis of (1) to that of

f(x) _x = G(x); (4)

where f(x) = detA(x) and G(x) = (adjA(x))g(x). (adjA(x) is the transpose of the

matrix of cofactors of A(x).) Indeed, one can show the following:

1.1 Proposition: Let f(x) = detA(x) and G(x) = (adjA(x))g(x). If (S

1

) and (S

2

) hold,

or if f(x

0

) = 0 and G(x

0

) 6= 0 hold, then (1) and (4) have exactly the same solutions near

x

0

. �

Under the additional assumptions A 2 C

2

and g 2 C

2

Rabier has shown the following

for attracting (resp. repelling) standard singular points x

0

:

(1) There are some T > 0 and exactly two solutions �

1

and �

2

of (1), de�ned on ]�T; 0[

(resp. ]0; T [), such that lim

t!0

�

1

(t) = lim

t!0

�

2

(t) = x

0

.

(2) The derivatives of solutions blow up near x

0

, i.e., lim

t!0

k

_

�

1

(t)k = lim

t!0

k

_

�

2

(t)k =1.

Following [Rab89],Medved' investigated the implicit di�erential equation (4) in order

to analyze (1) [Med91]. Under the assumptions f : R

n

! R 2 C

1

, G : R

n

! R

n

2 C

1

,

f(0) = 0 and G(0) 6= 0, the following was shown: For all f from some residual (generic)

subset of C

1

(R

n

;R) there is some � : U ! R n f0g 2 C

1

such that (4) is C

1

{conjugate

near 0 to

x

1

_x

1

= �(x);

_x

2

= 0; : : : ; _x

n

= 0

(5)

near 0. (A di�erential equation is C

r

{conjugate near x

0

to another di�erential equation

near ~x

0

if there are open neighborhoods U

0

and

e

U

0

of x

0

and ~x

0

, respectively, and some

C

r

{di�eomorphism �: U

0

!

e

U

0

with �(x

0

) = ~x

0

such that a curve x with values in U

0

is

a solution of the �rst equation i� the transformed curve � �x is a solution of the second.)

An investigation of Medved's proof shows that, for the local C

1

{conjugacy of (4)

and (5), it su�ces to assume f

0

(0)G(0) 6= 0, which is, apart from stronger smoothness

requirements, equivalent to say that 0 is a standard singular point of (1).



Medved' also investigated the case f

0

(0)G(0) = 0: Under appropriate assumptions

on higher order directional (or Lie) derivatives of f along G it was shown in [Med91] that

(4) is C

1

{conjugate near 0 to

0

@

x

r

1

+

r�1

X

j=0

x

j

1

�

j

(x

2

; : : : ; x

n

)

1

A

_x

1

= �(x);

_x

2

= 0; : : : ; _x

n

= 0

(6)

near 0, where � : U ! R n f0g 2 C

1

, �

j

: R

n�1

! R 2 C

1

and �

j

(0) = 0 for all

j 2 f0; 1; : : : ; r � 1g.

Recently, Rei�ig and Boche sharpened the �rst result of Medved' as follows: If A

and g of (1) are of class C

1

and if x

0

is a standard singular point, then (1) is C

1

{conjugate

near x

0

to (5) near 0 with either � = 1 = const. or � = �1 = const. [RB97].

In Section 2 of this paper, we show under appropriate assumptions that the implicit

di�erential equation (1) is C

s

{conjugate near points at which A is singular to the normal

form (2) near 0 for some s and some r. In particular, standard singular points correspond

to r = 1 in (2). A practical example leading to (2) with r = 2 is given in Section 3.

2 Main result

2.1 Theorem: Let n; r 2 N, s 2 N [ f1; !g, and let � = r + s � 1 if s 2 N and

� = s otherwise. Let further be U � R

n

an open neighborhood of x

0

, f : U ! R 2 C

�

,

G : U ! R

n

2 C

�

and

� = sign

�

D

r

f(x

0

)G(x

0

)

r

�

: (7)

(Here, C

!

is the class of analytic mappings and D

r

f is the r{th order derivative of f .)

Assume further that f(x

0

) = 0, � 6= 0, and that f

�1

(0) is an (n� 1){dimensional C

s

{

submanifold of R

n

, and D

j

f(x) = 0 holds for all j with 1 � j < r and for all x 2 f

�1

(0).

Then the di�erential equation (4) is C

s

{conjugate near x

0

to the normal form (2) near

0. �

Note that, if in addition to the hypotheses of the above Theorem, the mappings f and G

are de�ned by f(x) = detA(x) and G(x) = (adjA(x))g(x), then the di�erential equation

(1) is C

s

{conjugate near x

0

to the normal form (2) near 0.

Proof: We refer to [Rei97] for a complete proof and give a sketch only: First, assume

x

0

= 0 and G(0) = (1; 0; : : : ; 0) without loss of generality. Next, application of the method

from the proof of the Straightening{Out{Theorem to the explicit di�erential equation

_x = G(x) yields a C

�

{di�eomorphism 	 between neighborhoods of 0 2 R

n

. Its inverse

	

�1

transforms (4) into

~

f (x) _x = (1; 0; : : : ; 0), where

~

f = f �	. Hence, (4) and

~

f(x) _x

1

= 1;

_x

2

= 0; : : : ; _x

n

= 0

(8)

are C

�

{conjugate near 0.

We now straighten out the set

~

f

�1

(0): By means of the Implicit Function Theorem

there is a mapping � de�ned near 0 2 R

n�1

such that �: x 7! (x

1

+�(x

2

; : : : ; x

n

); x

2

; : : : ; x

n

)



is a local C

s

{di�eomorphism and, for all x near 0 2 R

n

,

~

f(�(x)) = 0 i� x

1

= 0. After

setting

^

f (x) = �

~

f(�(x)), �

�1

transforms (8) into

^

f(x) _x = �G(0): (9)

Exploiting properties of

^

f , one can show that there is a C

s

{mapping ' de�ned near

0 2 R

n

that ful�lls D

1

'(0) > 0 and '(x)

r

D

1

'(x) =

^

f(x) for all x. Hence, the mapping

x 7! ('(x

1

; x

2

; : : : ; x

n

); x

2

; : : : ; x

n

) is a local C

s

{di�eomorphism and transforms (9) into

the normal form (2). After all, (4) and (2) are C

s

{conjugate near 0. �

The following Theorem, which is proved in [Rei97], relates the case r = 1 of the above

Theorem to the results of [Rab89, Med91, RB97]:

2.2 Theorem: x

0

is a standard singular point of (1) i� the hypotheses of Theorem 2.1

are met for f(x) = detA(x), G(x) = (adjA(x))g(x), r = 1 and some s 2 N [ f1; !g.

In this case, the values of (3) and (7) coincide. �

The simplest example to illustrate standard singular points is the normal form (2) with

r = 1, n = 2 and � = �1. Here, the set of standard singular points, all being attracting,

is the hypersurface de�ned by x

1

= 0, all other points are regular. (See Fig. 1(a) for

illustration.) Further, for any x

0;2

2 R,

x

1

(t) = �

p

�2t and x

2

(t) = x

0;2

de�ne exactly two solutions for t < 0. No other solutions exist, except translations of the

above solutions in time, and hence, (1) and (2) from Section 1 also hold here.

Since the cases r > 1 and n > 2 of the normal form (2) can be completely analyzed

by similar simple considerations, the above Theorems provide powerful tools to analyze

the behaviour of the original di�erential equations (1) and (4) near points at which A is

singular and f is zero, respectively.

3 An Example

While examples of di�erential equations with standard singular points have been given in

the literature [Rab89, Rei96, RB97], we give a practical example for the case r = 2 below,

which has resisted an analytic treatment up to now.

Byrne und Ho (see [BH87]) give the di�erential equations

0 =�

s

R

2�

(R� y)

2

p

�P

0

0

@

2:5 ln

0

@

s

�R

2

y

�

p

�P

0

� 5

1

A

+ 10:5

1

A

� bQ

c0

�

P

0

P

Q

c0

(1 � b);

(10)

0 =2�

s

R

2�

p

�P

0

0

@

(2:5Ry � 1:25y

2

) ln

0

@

s

�R

2

y

�

p

�P

0

� 5

1

A

+ 3Ry � 2:125y

2

� 13:6R�

s

2

�R

1

p

�P

0

1

A

�Q

a

(11)

as a model of a pipeline problem: To successfully pipe a certain foam, the foam is sur-

rounded by an incompressible lubricating �lm. The question of interest is whether it is

possible to keep the pressure su�ciently high in the whole pipeline.
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Figure 1: (a) Trajectories of the normal form (2) with r = 1, n = 2 and � = �1. (b) x

1

{ and

x

2

{components of trajectories of (14){(15). (c) x

1

{component of those two solutions of (14){(15) that

correspond to the trajectories thickened in (a).

In (10){(11), the (dropped) argument t of P , P

0

and y is the space coordinate along

the pipeline in cm. y is the thickness of the lubricating �lm in cm, P is the pipeline

pressure in 10

�5

Ncm

�2

, and P

0

= P (0) = 1:378 � 10

8

is the pressure at the beginning of

the pipeline. R, �, �, Q

a

, Q

c0

, and b are prescribed parameters: R = 45:72, � = 0:814,

� = 0:098, b = 0:345, Q

c0

= 1:7153 � 10

6

, and Q

a

= 3:027 � 10

5

.

The equations (10){(11) make sense if P , �P

0

and the argument of the logarithm are

positive.

Using the substitutions x

1

(t) = 10

�7

P (10

7

t), x

2

(t) = (�P

0

(10

7

t))

�1=2

, and x

3

(t) =

y(10

7

t) (�P

0

(10

7

t))

1=2

R

�1

from [RR94] as well as x

4

(t) = ln

�

q

�R

2

y

�

(�P

0

(10

7

t))

1=2

� 5

�

,

we arrive at the di�erential equation

x

2

2

x

0

1

= �1; (12)

h(x) = 0; (13)

where h(x) =

0

B

@

x

1

(4:2 + x

4

)(1 � x

2

x

3

)

2

� c

2

x

2

(bx

1

+ c

4

(1 � b))

x

3

((2� x

2

x

3

)x

4

+ 2:4 � 1:7x

2

x

3

)� c

3

e

x

4

� c

1

x

3

+ 5

1

C

A
, c

1

=

R

�

q

�R

2

� 2012,

c

2

=

�Q

c0

2:5��Rc

1

� 19:72, c

3

=

10:88

c

1

+

0:4�Q

a

��Rc

1

� 3:485, and c

4

= 10

�7

P

0

= 13:78.

Reducing the index of (12){(13) by di�erentiating (13) as usual results in

x

2

2

x

0

1

= �1; (14)

h

0

(x) _x = 0: (15)

This di�erential equation is obviously of the type (1) with g(x) = (�1; 0; 0; 0) and

A(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@
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0 0 0
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)
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3
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3
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4
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2

(c

4

(1�b)+x

1
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2
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)
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4

)
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C

C

C
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C

C
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We investigate (14){(15) near the point x

0

= (0; 0; x

0;3

; x

0;4

), where x

0;3

is the solution of

c

3

= 2x

3

(ln(c

1

x

3

� 5) + 1:2), i.e., x

0;3

� 0:237, and x

0;4

= ln(c

1

x

0;3

� 5) � 6:16: Since

(S

1

) and (S

2

) are ful�lled, (14){(15) has exactly the same solutions near x

0

as (4) with

f(x) = detA(x) and G(x) = (adjA(x))g(x) (Prop. 1.1). One can also show that the

hypotheses of Theorem 2.1 are ful�lled with � = �1 [Rei97]. Hence, the di�erential

equation (14){(15) is C

!

{conjugate near x

0

to the normal form (2) near 0 with n = 4,

r = 2 and � = �1.

The �rst two components of some trajectories of (14){(15) are shown in Fig. 1(b).

The �rst components of the solutions that correspond to the two thick trajectories in

Fig. 1(b) are shown in Fig. 1(c). One can show that these solutions are indeed solutions

of (12){(13) and that only that solution that has positive x

1

{ and x

2

{components makes

sense for the practical problem.

One concludes from our analysis based on Theorem 2.1 that the pressure in the pipeline

tends to 0 and that the ow chokes if the pipeline is su�ciently long. From the numerical

simulation we see that the minimum length of the pipeline for this to happen is about

110km. Further investigation shows that the conjecture from [BH87] that choking ow

corresponds to a vanishing argument of the logarithms in (10){(11) is incorrect.

4 Conclusions

It has been shown that implicit di�erential equations A(x) _x = g(x) about certain singular

points may be transformed by di�eomorphisms into the normal form x

r

1

_x

1

= �1, _x

2

=

� � � = _x

n

= 0 about 0. This result is new and provides a deeper understanding of sytems'

behavior near singular points. In particular, we have been able to analyze an example

that had resisted an analytic treatment before. Further, the results of [Rab89, Med91] on

standard singular points follow from ours.
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