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A normal form for implicit di�erential equations near singular

points and its application
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This paper concerns quasi{linear implicit di�erential equations of form

0 = A

1

(x) _x� g

1

(x);

0 = g

2

(x);

(1)

where A

1

: U ! L(R

n

;R

n�m

) 2 C

1

, g

1

: U ! R

n�m

2 C

1

, g

2

: U ! R

m

2 C

2

, U � R

n

is

open, n;m 2 N, and m < n. In particular, (1) is considered about impasse points x

0

2 U ,

i.e., points x

0

beyond which solutions are not continuable. We review a recent result on a

normal form about such points and discuss two examples.

1 Introduction

Many technical systems and processes may be modelled by implicit di�erential equations

of the form

A(x) _x = g(x); (2)

where A : U ! L(R

n

;R

n

) 2 C

1

is a matrix of C

1

{functions, g : U ! R

n

2 C

1

, U � R

n

is open, and n 2 N. Whenever A is regular at some point x

0

2 U , the above implicit

di�erential equation (2) is locally equivalent to the explicit ordinary di�erential equation

_x = A(x)

�1

g(x) in some neighborhood of x

0

, and the usual existence, uniqueness and

smoothness results apply.

If A(x

0

) is not regular, these results do not apply, and the analysis of (2) near x

0

becomes more di�cult. For example, it may happen that the set of points at which A is

singular forms an (n � 1){dimensional submanifold of R

n

containing x

0

, a situation �rst

studied by Rabier for n > 1 [1]. Rabier considered a special type of impasse points,

i.e., points beyond which solutions of (2) are not continuable, and called them standard

singular points [1]. More recently,Medved' [2], Rei�ig [3] and Rei�ig and Boche [4, 5]

obtained normal forms for (2) near impasse points that are not necessarily standard.

If the matrix A from (2) is singular on some whole neighborhood of x

0

, the above

results do not apply, although the point x

0

may very well be an impasse. For example,

Rabier and Rheinboldt [6] have investigated the quasi{linear di�erential equation (2)

near special impasse points, called standard impasse points [6, p. 445]. Among other

things, these points have the property that the corresponding point of the reduction of (2)

by using local coordinates of of the hidden constraint set fx 2 U j g(x) 2 imA(x)g is a

standard singular point of that reduction.
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Venkatasubramanian, Sch

�

attler and Zaborsky [7] and Rei�ig [8] have con-

sidered the semi{explicit case of (1). The results of [7] and [8] for standard impasse points

are equivalent to those of [6] in the semi{explicit case, except that considerably weaker

smoothness assumptions are made in [8] and nondi�erentiable solutions are taken into

account in [8]. In addition, both [7] and [8] also investigate more general types of impasse

points.

Winkler [9] has considered the special form (1) of (2) under the additional assumption

that g

2

is a submersion and A

1

is surjective everywhere.

More recently, Rei�ig and Boche [10] have shown the following for (1):

1.1 Theorem: Consider the implicit di�erential equation (1), let n;m; r 2 N, m < n,

s 2 N[f1; !g, and let � = r+ s�1 if s 2 N and � = s otherwise. Let further be U � R

n

an open neighborhood of x

0

, and let A

1

, g

1

, g

2

and Dg

2

be of class C

�

.

Let f , G, and �, be de�ned by

f(x) = det

 

Dg

2

(x)

A

1

(x)

!

;

G(x) =

 

adj

 

Dg

2

(x)

A

1

(x)

!! 

0

g

1

(x)

!

;

� = sign(D

r

f(x

0

)G(x

0

)

r

); (3)

and assume the following: f(x

0

) = 0, g

2

(x

0

) = 0, � 6= 0, f

�1

(0)\g

�1

2

(0) is an (n�m�1){

dimensional C

s

{submanifold of R

n

, and D

j

f(x)G(x

0

)

j

= 0 holds for all j with 1 � j < r

and for all x 2 f

�1

(0) \ g

�1

2

(0).

Then the di�erential equation (1) is C

s

{conjugate near x

0

to the normal form

x

r

1

_x

1

= �;

_x

2

= 0; : : : ; _x

n�m

= 0;

x

n�m+1

= 0; : : : ; x

n

= 0

(4)

near 0. (For n = m+1, the second row of (4) is missing.) If � is the C

s

{di�eomorphism

that transforms solutions of (4) into solutions of (1), then

(�; 0; : : : ; 0) = D�(x

0

)G(x

0

) (5)

holds for some � > 0. �

In the above Theorem, C

!

is the class of analytic mappings, D

r

f is the r{th order deriva-

tive of f , and adjA(x) denotes the transpose of the matrix of cofactors of A(x). Further, a

di�erential equation is C

r

{conjugate near x

0

to another di�erential equation near ~x

0

if there

are open neighborhoods U

0

and

e

U

0

of x

0

and ~x

0

, respectively, and some C

r

{di�eomorphism

�: U

0

!

e

U

0

with �(x

0

) = ~x

0

such that a curve x with values in U

0

is a solution of the �rst

equation i� the transformed curve � � x is a solution of the second.

It should be noted that the normal form (4) near 0 is C

!

{conjugate to the normal form

_x

1

= 1;

_x

2

= � � � = _x

n�m

= 0;

x

n�m+1

= � � � = x

n�1

= 0;

0 = x

1

� �x

r+1

n

(6)
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Figure 1: Trajectories of the normal form (4) with r = 1, n = 3, m = 1, and � = �1.

near 0. (For n = m + 1, the second row of (6) is missing, and for m = 1, the third is

missing.) That is, under the assumptions of the above Theorem, the implicit di�erential

equation (1) near x

0

is C

s

{conjugate to the normal form (6) near 0.

The following Corollary provides a su�cient condition for the hypotheses of Theorem

1.1 to be ful�lled:

1.2 Corollary: The hypothesis of Theorem 1.1 that f

�1

(0) \ g

�1

2

(0) is an (n �m � 1){

dimensional C

s

{submanifold of R

n

is met if the remaining conditions of that Theorem hold

and f

�1

(0) is an (n� 1){dimensional C

s

{submanifold of R

n

. �

The following statement relates the case r = 1 of Theorem 1.1 to the results of [6, 7, 9, 8]

on standard impasse points:

1.3 Corollary: Let m;n;U; x

0

as in Theorem 1.1, let A

1

and g

1

be of class C

1

, and let

g

2

be of class C

2

. In addition, assume that A

1

(x

0

) is surjective.

Then x

0

is a standard impasse point in the sense of [6] i� the requirements of Theorem

1.1 are ful�lled with r = s = 1. In that case, � from (5) equals

sign

 *

u

�

�

�

�

 

0

g

1

(x

0

)

!+

�

*

u

�

�

�

�

 

D

2

g

2

(x

0

)kk

A

0

1

(x

0

)kk

!+!

for all k 2 ker

 

Dg

2

(x

0

)

A

1

(x

0

)

!

n f0g and all u 2 im

  

Dg

2

(x

0

)

A

1

(x

0

)

!!

?

n f0g, where h�j�i is the

usual inner product in R

n

. �

The normal form (4) with r = 1, n = 3, m = 1 and � = �1, i.e.

x

1

_x

1

= �1;

_x

2

= 0;

x

3

= 0

is a simple example to illustrate the phenomenon of impasse points. Here, all points of

the x

2

{axis are impasse points which are standard; see Fig. 1 for illustration. Further, for

any x

2;0

2 R,

x

1

(t) = �

p

�2t; x

2

(t) = x

2;0

; and x

3

(t) = 0

de�ne exactly two solutions for t < 0. No other solutions exist, except translations of the

above solutions in time.
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Figure 2: (a)Network investigated in Example 2.1. (b) The surface g

�1

2

(0), the set f

�1

(0)\ g

�1

2

(0) (grey

line), and trajectories of (7){(9).

Since the other cases of the normal forms (4) and (6) can be completely analyzed by

similar simple considerations, the above Theorem provides a powerful tool to analyze the

behaviour of the original di�erential equation (2) near certain impasse points.

This paper demonstrates the application of Theorems 1.1 to the analysis of two ex-

amples: An electrical network with impasse points from [8] and a pipeline problem with

choking 
ow from [11].

2 Examples

2.1 Example: The network from [8, Example IV.4.], shown in Fig. 2(a), contains a ca-

pacitor of capacitance 1, an inductor of inductance 1, and a tunnel diode. It is described

by the equations

_v

C

= i

D

; (7)

_

i

D

= �v

C

� v

D

; (8)

0 = i

D

� v

3

D

+ 9v

2

D

� 24v

D

; (9)

where (9) represents the voltage current relation of the tunnel diode.

Obviously, (7){(9) is of form (1) with

A

1

(v

D

; v

C

; i

D

) =

 

0 1 0

0 0 1

!

;

g

1

(v

D

; v

C

; i

D

) =

 

i

D

�v

C

� v

D

!

;

g

2

(v

D

; v

C

; i

D

) = i

D

� v

3

D

+ 9v

2

D

� 24v

D

:

Hence,

f(v

D

; v

C

; i

D

) = 3(6v

D

� v

2

D

� 8);

G(v

D

; v

C

; i

D

) =

0

B

@

v

C

+ v

D

3i

D

(6v

D

� v

2

D

� 8)

�3(v

C

+ v

D

)(6v

D

� v

2

D

� 8)

1

C

A

:
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Figure 3: (b) x

1

{ and x

2

{components of trajectories of (12){(13). (c) x

1

{component of the two solutions

of (12){(13) that correspond to the trajectories in (a).

Obviously, we have f

�1

(0) = f2; 4g�R

2

and f

�1

(0)\ g

�1

2

(0) = (f2g�R�f20g)[ (f4g�

R� f16g). (See Fig. 2(b).)

For points(v

D

; v

C

; i

D

) 2 f

�1

(0) we have f

0

(v

D

; v

C

; i

D

)G(v

D

; v

C

; i

D

) = 6(3 � v

D

)(v

C

+

v

D

), i.e.,

� = ((3 � v

D

)(v

C

+ v

D

)):

Hence, the requirements of Theorem 1.1 are ful�lled with r = 1 and s = ! for all points

(v

D

; v

C

; i

D

) 2 f

�1

(0) \ g

�1

2

(0) with v

C

+ v

D

6= 0. In particular, if v

D

= 2, then � = �1

for v

C

< �2 and � = 1 for v

C

> �2. It follows from Theorem 1.1 that exactly two

solutions converge at �nite time to any point (v

D

; v

C

; i

D

) with v

D

= 2 and v

C

6= �2,

where convergence is for increasing time if v

C

< �2 and for decreasing time if v

C

> �2.

This is illustrated in Fig. 2(b).

FromCorollary 1.3 we see that all points (v

D

; v

C

; i

D

) 2 f

�1

(0)\g

�1

2

(0) except (2;�2; 20)

and (4;�4; 16) are standard impasse points. �

The following is a practical example for the case r = 2, which has resisted an analytic

treatment up to now.

2.2 Example: Byrne und Ho (see [11]) give the di�erential equations

0 =�

s

R

2�

(R � y)

2

p

�P

0

0

@

2:5 ln

0

@

s

�R

2

y

�

p

�P

0

� 5

1

A

+ 10:5

1

A

� bQ

c0

�

P

0

P

Q

c0

(1� b);

(10)

0 =2�

s

R

2�

p

�P

0

0

@

(2:5Ry � 1:25y

2

) ln

0

@

s

�R

2

y

�

p

�P

0

� 5

1

A

+ 3Ry � 2:125y

2

� 13:6R�

s

2

�R

1

p

�P

0

1

A

�Q

a

(11)

as a model of a pipeline problem: To successfully pipe a certain foam, the foam is sur-

rounded by an incompressible lubricating �lm. The question of interest is whether it is

possible to keep the pressure su�ciently high in the whole pipeline.

In (10){(11), the (dropped) argument t of P , P

0

and y is the space coordinate along

the pipeline in cm. y is the thickness of the lubricating �lm in cm, P is the pipeline

pressure in 10

�5

Ncm

�2

, and P

0

= P (0) = 1:378 � 10

8

is the pressure at the beginning of
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the pipeline. R, �, �, Q

a

, Q

c0

, and b are prescribed parameters: R = 45:72, � = 0:814,

� = 0:098, b = 0:345, Q

c0

= 1:7153 � 10

6

, and Q

a

= 3:027 � 10

5

.

The equations (10){(11) make sense if P , �P

0

and the argument of the logarithm are

positive.

By means of the substitutions x

1

(t) = 10

�7

P (10

7

t), x

2

(t) = (�P

0

(10

7

t))

�1=2

, x

3

(t) =

y(10

7

t) (�P

0

(10

7

t))

1=2

R

�1

from [12] as well as x

4

(t) = ln

�

y

q

�R=2 (�P

0

(10

7

t))

1=2

=� � 5

�

we arrive at the di�erential equation

x

2

2

_x

1

= �1; (12)

g

2

(x) = 0; (13)

where g

2

(x) =

0

B

@

x

1

(4:2 + x

4

)(1� x

2

x

3

)

2

� c

2

x

2

(bx

1

+ c

4

(1 � b))

x

3

((2� x

2

x

3

)x

4

+ 2:4� 1:7x

2

x

3

)� c

3

e

x

4

� c

1

x

3

+ 5

1

C

A

, c

1

=

R

�

q

�R

2

� 2012,

c

2

=

�Q

c0

2:5��Rc

1

� 19:72, c

3

=

10:88

c

1

+

0:4�Q

a

��Rc

1

� 3:485, and c

4

= 10

�7

P

0

= 13:78.

(12){(13) is obviously of form (1) if we set g

1

(x) = 1 and A

1

(x) = (x

2

2

; 0; 0; 0). We

investigate (12){(13) near the point x

0

= (0; 0; x

0;3

; x

0;4

), where x

0;3

is the solution of

c

3

= 2x

3

(ln(c

1

x

3

� 5) + 1:2), i.e., x

0;3

� 0:237, and x

0;4

= ln(c

1

x

0;3

� 5) � 6:16. To this

end, we �rst set

A(x) =

 

Dg

2

(x)

A

1

(x)

!

=

0

B

B

B

B

@

(1�x

2

x

3

)

2

�

(4:2+x

4

)�c

2

x

2

b

0

e

A(x)

0

x

2

2

0 0 0

1

C

C

C

C

A

;

where

e

A(x) is de�ned as

0

B

B

B

B

B

B

B

@

�2 x

1

x

3

(1�x

2

x

3

)�

(4:2+x

4

)�

c

2

(c

4

(1�b)+x

1

b)

�2 x

1

x

2

(1�x

2

x

3

)�

(4:2+x

4

)

x

1

(1� x

2

x

3

)

2

�x

2

3

(1:7 + x

4

) 2

�

1:2�1:7x

2

x

3

+x

4

�x

2

x

3

x

4

�

x

3

(2� x

2

x

3

)

0 �c

1

e

x

4

1

C

C

C

C

C

C

C

A

:

We obtain

det

e

A(x

0

) =

(b� 1)c

1

c

2

c

4

x

0;3

�

2x

2

0;3

+

c

3

c

1

(c

1

x

0;3

� 5)

�

< 0:

Let f , G, and � be as in Theorem 1.1. Obviously, f(x

0

) = 0. Since f(x) = �x

2

2

det

e

A(x),

f(x) = 0 is equivalent to x

2

= 0 in some neighborhood of x

0

. In particular, f

�1

(0) is a C

!

{

submanifold of R

4

near x

0

. Further, we have f

0

(x)h = �2x

2

h

2

det

e

A(x)�x

2

2

(det

e

A(�))

0

(x)h

for all h 2 R

4

, in particular, f

0

(x) = 0 if x

2

= 0, regardless of the value of g

2

(x). For

the second order derivative of f we have f

00

(x

0

)G(x

0

)

2

= �2(G(x

0

)

2

)

2

det

e

A(x

0

). Further,

dimkerA(x

0

) = 1 and (0; 0; 0; g

1

(x

0

)) =2 imA(x

0

) imply G(x

0

) 2 kerA(x

0

) n f0g. Since

e

A(x

0

) is regular, the lower{right 2�2{submatrix of

e

A(x

0

) is regular, and hence,G(x

0

)

2

6= 0.

(Otherwise, we had G(x

0

)

3

= G(x

0

)

4

= 0. By x

0;4

+ 4:2 6= 0, we also had G(x

0

)

1

= 0, in

contradiction to G(x

0

) 6= 0.) Hence, hypotheses of Theorem 1.1 are ful�lled with n = 4,

m = 3, r = 2, � = 1, and s = !.

The �rst two components of two trajectories of (12){(13) are shown in Fig. 3(b), and

the �rst components of the corresponding solutions are shown in Fig. 3(c). Note that

only that solution that has positive x

1

{ and x

2

{components makes sense for the practical

problem.
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Finally, one shows that G(x

0

)

1

< 0 and concludes from Theorem 1.1 that the pressure

in the pipeline tends to 0 and that the 
ow chokes, provided that the pipeline is su�ciently

long. From the numerical simulation we see that the minimum length of the pipeline for

this to happen is about 110km. In addition, further investigation shows that the conjecture

from [11] that choking 
ow corresponds to a vanishing argument of the logarithms in (10){

(11) is incorrect. �
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