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ABSTRACT

We propose to determine fundamental circuits of two matroids in-
duced by certain bipartite graphs derived from the network equa-
tions in order to detect inconsistencies in large electrical networks.
Our method is easy to implement, is very fast, and does not rely on
a specific form of network equations. It has been implemented in
the circuit simulator TITAN of Infineon Technologies and, despite
its simplicity, is of great help in locating inconsistencies in erro-
neous network descriptions, especially if these descriptions con-
tain VHDL-AMS code.

1. BACKGROUND

The simulation of an electrical network is usually based on its net-
work equations

F (x; _x) = f(t); (1)

which are automatically generated from a description of the elec-
trical network such as a SPICE netlist or VHDL-AMS source code
by the simulation software [1]. Generating an appropriate descrip-
tion, however, often requires human interaction and is a difficult
and error prone task.

Network equations obtained from an erroneous description might
still be simulated, but some of the numerically calculated voltages
and currents will be implausible. Usually, by looking at these im-
plausible quantities, the user is able to correct the description of
the circuit.

Often, however, the network equations cannot be simulated as
they contain inconsistencies. In particular, these equations may
not be uniquely solvable or not uniquely DC-solvable, which may
be due simply to human error or to oversimplified modeling and
also frequently happens in fault simulation. As a simulation is
impossible, the source of the problem is usually located by other
means:

Prior to any simulation, present circuit simulators check whether
the network graph fulfills certain conditions that are sufficient for
the unique solvability of the network equations (1), see [2] and
the references cited in [3]. If that test fails, some of the available
methods provide circuits and cut-sets of critical network elements,
which is of great help in correcting the description of the network.

Alternatively, the method proposed in [4] yields minimum reg-
ularizations of linear networks that are generically uniquely solv-
able. That is, the networks are augmented with a minimum number
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of additional network elements in order to make them generically
uniquely solvable. See also [3] for related results.

There are a couple of methods that investigate properties of the
network equations (1) directly [5, 6]. These methods check if cer-
tain conditions necessary for regularity of the Jacobians
D1F (x0; y0) and D1F (x0; y0) + sD2F (x0; y0), for appropri-
ate s 2 R and x0; y0, are met. Otherwise, they provide a list
of superfluous rows and columns of these Jacobians that linearly
depend on the remaining rows and columns. These methods ap-
ply graph-theoretical algorithms to bipartite graphs derived from
the zero-nonzero structure of the Jacobians. Hence, the necessary
conditions checked involve the zero-nonzero structure of the Ja-
cobians only, which is why these methods are called structural
methods. (For a variant using representation graphs rather than bi-
partite graphs, and for a generalization of the structural approach,
see [7] and the references therein.)

Another simple heuristic is to check certain relations between
the number of variables and the number of equations of high level
descriptions of network elements as done in VHDL-AMS [8, 9].

While the method from [4] is computationally unacceptably
expensive, the methods from both [4] and [2,3] heavily rely on the
network graph and a certain, fixed set of network elements. As a
consequence, these methods fail if the network or any part thereof
is described in some high level description language.

To check the numbers of variables and equations in the de-
scription of the network elements as in VHDL-AMS would point
to erroneous element descriptions only, but would not detect any
inconsistencies that involve the topology of the network, such as a
circuit of voltage sources.

Finally, the structural methods from [5, 6] provide rather in-
complete information as they do not reveal on which rows and
columns the superfluous rows and columns actually depend.

In conclusion, for networks that contain parts described in
some high level language, the current methods for checking for
inconsistencies in network descriptions are either not applicable
or do not provide as detailed information on how to remove these
inconsistencies as is available from the established methods for
conventional networks not containing high level language code.
This is a serious drawback since the more general the description
language is, the more likely is human error and inappropriate mod-
eling. In fact, most of the erroneous network descriptions sent to
the hotline of the network simulator TITAN of Infineon Technolo-
gies contain VHDL-AMS code.

In this paper, we propose a structural method for detecting
inconsistencies in equation (1) which is easy to implement, is very
fast, and does not rely on a specific form of (1).
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That method refines those from [5, 6] in that it does not only
yield a list of superfluous rows and columns of the Jacobians
D1F (x0; y0) and D1F (x0; y0) + sD2F (x0; y0), but also deter-
mines on which rows and columns those superfluous rows and
columns actually depend. Mathematically, we do not only calcu-
late a maximum matching in a bipartite graph derived from (1), but
also determine the fundamental circuits in two matroids induced
by that graph with respect to the matching.

Our method is described in section 2, which also contains a
bound on its computational complexity. Its application is demon-
strated in section 3.

2. DETECTING STRUCTURAL INCONSISTENCIES

To check equation (1) for unique solvability and unique DC-solv-
ability, we assume F : Rm �Rm ! R

n and f : R ! R
n and test

if certain conditions necessary for the regularity of the Jacobians
D1F (x0; y0) and D1F (x0; y0) + sD2F (x0; y0) are met.

In a first step, as done in all structural methods, we set up an
n�m matrix L. To check for unique solvability, L is defined by

Li;j =

(
1 if F (x; y) depends on xj or yj
0 otherwise

; (2)

for unique DC-solvability, by

Li;j =

(
1 if F (x; y) depends on xj
0 otherwise

:

In a second step, we determine a maximum matching in the
bipartite graph G(L) of L, G(L) = (V1; V2; E).

In a third step, if the maximum matching found is not perfect,
we determine the fundamental circuits of the row matroid of G(L)
with respect to the base V1 \ @M by growing an Hungarian forest
(V 0

1 ; V
0

2 ; E
0) in the subgraph of G(L) induced by the set (@M \

V1) [ V2 [ fvg of vertices, for each v 2 V1 n @M . The following
result shows that, for each such v, the vertex set V 0

1 of the forest is
the fundamental circuit containing v in the row matroid R(G(L)):

2.1 Theorem Let G be a bipartite graph, G = (V1; V2; E), M
a matching in G, and F a maximal M -alternating forest in G,
F = (V 0

1 ; V
0

2 ; E
0), V 0

1 � V1, V 0

2 � V2. Then the following
holds for any v 2 V1: There is a circuit of the row matroid R(G)
containing v iff v 2 V 0

1 .

In a fourth step, we determine the fundamental circuits of the col-
umn matroid of G(L) by applying the third step to G(LT ).

The fundamental circuits in the row (column) matroid of G(L)
correspond to linearly dependent sets of rows (columns) of the Ja-
cobians D1F (x0; y0) and D1F (x0; y0) + sD2F (x0; y0), respec-
tively. Of course, as the above algorithm does not take into ac-
count any numerical values of the elements in those Jacobians, the
linearly dependent sets of rows (columns) may not be minimal.
However, the following can be shown if the nonzero entries of the
above Jacobians are independently varying parameters: For all but
exceptional numerical values for those parameters, any proper sub-
set of any set of rows (columns) corresponding to a fundamental
circuit in the row (column) matroid of G(L) is linearly indepen-
dent.

Regarding run time, note that the first step is computationally
trivial and takes O(r) operations, where r is the number of nonze-
ros in the matrix L from (2). A maximum matching is found in the

second step in O(r(n+m)1=2) operations [10]. It is important to
note that augmenting path algorithms for the maximum matching
problem actually grow Hungarian forests, and each such forest in
the third and fourth steps can be found in O(r) operations, so that
the total number of operations of the method is O(r(n+m)).

Finally, it should be noted that, as an alternative to the first
step above, it is sometimes useful to define the matrix L by the
requirement that it has exactly the same zero-nonzero structure as
the Jacobians D1F (x0; y0) and D1F (x0; y0) + sD2F (x0; y0),
respectively, for appropriate s 2 R and x0; y0 2 Rm .

3. EXAMPLES

The following examples are worked out based on the branch-voltage-
branch-current equations [3], but any other type of circuit equa-
tions could have been chosen instead.

3.1 Example Consider the electrical network from Fig. 1(a). Its
network equations are of the form

A _x+Bx = f(t); (3)

where x = (vR; vC1
; vC2

; iR; iC1
; iC2

), vj and ij are the voltage
across and the current through the network element j,

sA+B =

0
BBBBB@

1 �1 1 � � �
� � � �1 �1 �
� � � 1 � �1
�1 � � R � �
� sC1 � � �1 �
� � sC2 � � �1

1
CCCCCA ;

and dots (�) denote zero entries.
In order to check for unique solvability, set up the matrix L

first: Li;j = 1 if (sA + B)i;j 6= 0 and Li;j = 0 otherwise.
The bipartite graph G(L) is (V1; V2; E), where V1 = f1; : : : ; 6g,
V2 = f7; : : : ; 12g, and

E = ff1; 7g; f1; 8g; f1; 9g; f2; 10g; f2; 11g; f3; 10g; f3; 12g;

f4; 7g; f4; 10g; f5; 8g; f5; 11g; f6; 9g; f6; 12gg;

see Fig. 1(b). In the second step, the perfect matching

ff1; 7g; f2; 11g; f3; 12g; f4; 10g; f5; 8g; f6; 9gg

is obtained, i.e., no inconsistencies are found. Indeed, for almost
all values of the parameters R, C1, C2 and s, the matrix sA + B
is regular, and hence, (3) is uniquely solvable.

In order to check for unique DC-solvability, set up the matrix
L first: Li;j = 1 ifBi;j 6= 0 and Li;j = 0 otherwise. The bipartite
graph G(L) has the edge set

E = ff1; 7g; f1; 8g; f1; 9g; f2; 10g; f2; 11g; f3; 10g; f3; 12g;

f4; 7g; f4; 10g; f5; 11g; f6; 12gg;

see Fig. 1(c). In the second step, the maximum matching

M = ff1; 8g; f2; 10g; f4; 7g; f5; 11g; f6; 12gg

in G(L) is found. In the third step, the Hungarian forest shown in
Fig. 1(d) is found. The set f2; 3; 5; 6g of vertices is a fundamental
circuit of the row matroid of G(L). Its elements correspond to
Kirchhoff’s current equations of the nodes 2 and 3 of the network
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from Fig. 1(a) and the element equations of C1 and C2. Indeed,
these equations are linearly dependent. This corresponds to the
fact that the branches C1, C2 form a cut-set of the network graph.

In the fourth step, we find the fundamental circuit f8; 9g in the
column matroid of G(L). Its elements correspond to the voltages
vC1

and vC2
. Indeed, the corresponding columns of B are lin-

early dependent. The voltages vC1
and vC2

cannot be determined
uniquely due to the cut-set composed of C1 and C2.

3.2 Example The electrical network from Fig. 2(a) is a compara-
tor which is commonly used for applications in power amplifiers
and motor control, see [11], pp. 6-87. In a very first attempt
to simulate that network, it seems natural to regard the OpAmps
as ideal, i.e., to model them as nullors. The network equations
of the resulting network from Fig. 2(b) are of the form (3) with
x = (v1; : : : ; v8; ii; : : : ; i8), A = 0, and B equal to the matrix

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

�1 1 1 � � � � � � � � � � � � �
� � �1 1 1 � � � � � � � � � � �
� � � � � 1 1 �1 � � � � � � � �
� � � � � � � � � � � � � � 1 1
� � � � � � � � � � � � � �1 1 �
� � � � � � � � � � � 1 �1 � � �
� � � � � � � � � 1 �1 1 � � � �
� � � � � � � � 1 1 � � � � � �
1 � � � � � � � � � � � � � � �
� �1 � � � � � � � R � � � � � �
� � 1 � � � � � � � � � � � � �
� � � � � � � � � � 1 � � � � �
� � � �1 � � � � � � � R0 � � � �
� � � � 1 � � � � � � � � � � �
� � � � � � � � � � � � 1 � � �
� � � � � � �1 � � � � � � � R00 �

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

First, define L by Li;j = 1 if Bi;j 6= 0 and Li;j = 0 oth-
erwise. In the second step, a maximum matching of cardinal-
ity 14 is found. In the third and fourth steps, the two circuits
f1; 6; 7; 9; 10; 11; 12; 15g and f2; 6; 11; 13; 14; 15g of the row ma-
troid and the two circuits f6; 8g and f7; 14; 15; 16g of the column
matroid of G(L) are found. The corresponding rows and columns
of B are linearly dependent. While the circuits of the row matroid
are difficult to interpret, those of the column matroid correspond
to the singular subnetwork composed of the branches 6, 7 and 8.

4. CONCLUSIONS

We have proposed a method for detecting inconsistencies in elec-
trical networks based on the calculation of fundamental circuits of
two matroids induced by a bipartite graph derived from the net-
work equations.

That method has been implemented in the circuit simulator
TITAN of Infineon Technologies and, despite its simplicity, is of
great help in locating inconsistencies in erroneous network de-
scriptions, especially if these descriptions contain VHDL-AMS
code.

In addition, our method is extremely fast, which allows for its
routine application prior to any simulation: In tests on network
equations without inconsistencies involving up to 120000 vari-
ables, the authors have never observed running times exceeding
1 second on standard workstations.

We would like to emphasize that fundamental circuits of the
kind we determine in our method have been employed for other

purposes earlier and that there are methods different from ours to
calculate them [12–14].
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5. APPENDIX

We give basic definitions and well-known results from [15].

5.1. Basic Terminology

A graph is a pair (V;E) of a finite set V of vertices and a set
of edges with E � ffv1; v2gjv1; v2 2 V g. Let G be a graph,
G = (V;E), and M � E. The set of end vertices of the edges
in M is denoted by @M . M is a matching in G if different edges
of M do not have an end vertex in common. A matching M in
G is perfect if @M = V . A set C � V is a vertex cover in G if
e \ C 6= ; for all e 2 E.

5.2. Bipartite graphs, Hungarian forests

Let G be a graph, G = (V;E), and M a matching in G. G
is bipartite if there is a partition fV1; V2g of V such that E �
ffv1; v2gjv1 2 V1; v2 2 V2g. In that case, we also call (V1; V2; E)
a graph, and the following terms are meant to be defined with
respect to the partition fV1; V2g and with respect to the order in
which V1 and V2 appear in (V1; V2; E).

Let G be a bipartite graph, G = (V1; V2; E), M a matching
in G, and F a forest in G, F = (V 0

1 ; V
0

2 ; E
0), V 0

1 � V1, V 0

2 � V2.
F is M -alternating if

(i) for all v 2 V 0

2 , the degree of v in F is 2 and v 2 @(M\E0),

(ii) each component of F has a vertex contained in V1 n @M .

F is a Hungarian forest in G if F is a maximal M -alternating
forest in G and ffv1; v2g 2 Ejv1 2 V 0

1 ; v2 2 V2 n @Mg = ; for
some matching M in G.

5.1 Theorem Under the assumptions and in the notation of The-
orem 2.1, M is maximum iff F is Hungarian. Moreover, if M is
maximum, then (V1 n V

0

1 ) [ V
0

2 is a minimum vertex cover in G.

5.3. Matroids, bipartite graphs, matrices

Let M be a matroid, M = (S;F ). A circuit in M is a minimal
dependent set. Let G be a bipartite graph, G = (V1; V2; E), and
F = fV2 \ @M jM is a matching in G.g. Then (V2; F ) is a ma-
troid which is called the column matroid of G and denoted C(G).
The row matroid R(G) is a matroid with ground set V1 defined
analogously.

Let L : Rk ! L(Km ;Kn ) be an n � m matrix over K ,
K 2 fR; C g, that depends analytically on some parameter p 2 R

k .
Let S = fn + 1; : : : ; n+mg and

F = fn+XjX � f1; : : : ;mg; 9p2RkThe set of columns of

L(p) corresponding to X is linearly independent.g:
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Fig. 1. Illustration of example 3.1. (a) Electrical network. (b) Bipartite graph G(L). (c) Bipartite graph G(L). (d) Hungarian forest in
G(L). (In (b) and (c), matching edges are solid lines, while all other edges of the graphs are shown as dotted lines.)
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1 3R 5
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R00
8 6

7
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Fig. 2. Illustration of example 3.2. (a) Electrical network. (b) OpAmps modeled by nullors.

Then (S; F ) is a matroid which is called the column matroid of
L and denoted C(L). The row matroid R(L) is a matroid with
ground set f1; : : : ; ng defined analogously.

Denote by suppL the set of positions of the nonzeros of L,
suppL = f(i; j)j1 � i � n; 1 � j � m;9p2RkL(p)i;j 6= 0g.
The bipartite graph of L, G(L), is the bipartite graph (V1; V2; E)
with V1 = f1; : : : ; ng, V2 = fn + 1; : : : ; n + mg, and E =
(0; n) + suppL, where ’+’ denotes elementwise addition. The
matrix L is structurally regular if its bipartite graph G(L) has a
perfect matching.
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