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ABSTRACT 
In many problems, such as the analysis of electrical cir- 

cuits, one has to deal with Differential-Algebraic Equations 
(DAE’s). Knowing their generic index is of interest for prac- 
tical and numerical as well as for theoretical reasons. In this 
paper we give an algorithm that determines the generic in- 
dex of the Circuit Equations of linear active electrical net- 
works in polynomial time from tlie network topology alone. 
I t  uses integer arithmetic and does neither require symbolic 
calcnlations nor real arithmetic. 

1 INTRODUCTION 
In many problems one has to deal with Differential- 
Algebraic Equations (DAE’s) of form 

F ( z ( t ) ,  i ( t ) ,  t )  = 0. (1) 
Knowing the index [1-3] of (1) would be a great advantage 
for several reasons. For example, numerical solution of ( I )  
is, as a rule, the more complicated the higher its index is, 
and choosing an appropriate numerical algorithm is easier 
if tlie index is a priori known [I]. In particular, it would 
be advantageous if tlie index of DAE’s to be solved in net- 
work analysis programs could be computed within these 
programs. Also, in case (1) describes tlie dynamic behavior 
of an electrical circuit, the index can be used to determine 
how many input derivatives enter the solution x, a question 
of high practical importance. 

While computing the index for tlie general nonlinear case 
(1) is rather difficult and requires symbolic computations 
[a], its determination for the linear constant-coefficient case 

A i @ )  + B x ( t )  + q ( t )  = 0 (2) 

can be done using standard algorithms. 
A serious problem, however, reinairis to be solved even in 

the linear case ( 2 ) .  If, for example, (2) are the Circuit, Equa- 
tions of a linear electrical network, then A and B contain 
the parameters of the network elements, such as resistances 
of resistors. Hence, the so computed index is correct for 
a special choice of parameters. In worst case it niay hap- 
pen that for all other values of tlie network’s parameters 
tlie index differs from tlie computed one. This means that 
knowing the index of ( 2 )  for a special choice of parameters 
has limited practical iniportance only. 

To overcome this, one has to compute a generic iridez, a 
number that equals the index of ( 2 )  for alinost all values of 
the system’s parameters. 

A first result in that  direction is due to DCJFF and GEAR 
[4], a second due to REINSCHKE and ROBENACX [SI. tin- 
fortunately, these approaches have a drawback in common 
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in that  they require tha t  any nonzero entry of the matri- 
ces A and B in (2) represents some parameter. In most 
applications, however, A and B contain both, parameters, 
e.g. resistances, and nonzero constants, e.g. 1 and -1 in 
KIRCHHOFF’S Equations [6, Sec. 151. Therefore, the algo- 
rithms suggested in [4,5] do not apply, for example, to the 
Ckcuit Equations of electrical networks. Even worse, appli- 
cation of these algorithms to  any system of equations com- 
ing from an electrical network in general requires symbolic 
calculations. 

Another drawback of the algorithms mentioned above is 
that they are either not polynomial [4] or their complexity 
has not been considered yet [5]. 

There are other criteria on generic solvability of the Cir- 
cuit Equations of linear active networks [7-lo]. They can be 
used to determine whether the Circuit Equations are gener- 
ically of index 1 and are checkable by operations on natu- 
ral numbers. In addition, the results of [9,7] characterize 
generically solvable networks and also yield the complexity 
of these networks. 

In this paper we give an algorithm that determines the 
generic index of the Circuit Equations of linear active elec- 
trical networks in polynomial time from the network topol- 
ogy alone. It uses only integer arithmetic and is applica- 
ble to linear networks that consist of the following types of 
elements: Independent, possibly time-variant, voltage and 
current sources, time-invariant resistors, capacitors, induc- 
tors, nullator-norator pairs, and all four types of controlled 
sources. 

After we will have explained basic terms in Section 2, 
the algorithm is stated in terms of matroids in Section 3. 
Althongli our algorithm is not intended to be performed by 
hand, we denionstrate its application to a simple circuit in 
Section 4. Additionally, our example shows that a linear 
network containing an OpAmp as the only active element 
can exhibit an arbitrarily high generic index. 

2 PRELIMINARIES 

As already mentioned, we consider linear networks that 
consist of the following types of elements: Independent, 
possibly time-variant, voltage and current sources, time- 
invariant resistors, capacitors, inductors, nullator-norator 
pairs, and controlled sources. 

Consider such a network h/ with branch set { 1,  2 , .  . . , a} 
ancl denote by p E Rk the vector containing all paraineters 
of N:  Resistances, capacitances, inductances, and gains of 
controlled sources. The  Circuit Equations of n/ have the 
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form 

A(p):= 

\ /Vl\ 

Table 1. A l g o r i t h m  that determines the generic in- 
dex of the C i r c u i t  Equations of a network. 

- ’ - ‘  
B ( p ) : =  

where (VI,. . . , vb)  and (21,. . . , ib) denote the branch volt- 
ages and currents, respectively, K denotes a matrix cor- 
responding to KIRCHHOFF’S Equations, M ( p )  is a matrix 
corresponding to the constitutive relations of the resistive 
branches, and the submatrices A L C ( ~ )  and BLC correspond 
to the constitutive relations of the reactances. 

We call the network hl generically solvableif (A(p) ,  B ( p ) )  
is a regular pencil [I, 31 for all p from some open dense set 
U C Rk.  Since we assume the functions of the independent 
sources, q ,  to be sufficiently smooth or to belong to some 
suitable function space, this terminology is completely jus- 
tified [3,11]. 

We say that N is generically of index p if JV is generi- 
cally solvable and ind(A(p), B(p)) = p for all p froin some 
open dense set U Rk, where ind(A(p), B(p))  denotes the 
index of the matrix pencil (A(p), B(p))  [I, 3 . In case h/ i s  
generically of index 1-1, we also write ind,( J ) = p .  

3 THE ALGORITHM 
In order to give a formulation of our algorithm that is both, 
precise and concise, we still need to introduce some further 
not a t  ion. 

First, we denote the set of capacitor branches of a network 
hl by C and the set of inductor branches by L. 

If the branch set of the network N is {1 ,2 , .  . . , b } ,  it will 
be convenient to  ,set 

S:= {1 ,2 ,  . . . ,  2 b }  

I ,  : = j + b  
v, :=j 

for all branches j of hl, i.e., for 1 5 j 5 b. The  coluinns of 
the matrices A(p) and B(p) in (3) can then be denoted by 
VI through v b  and I1 through I b ,  a very natural notation. 

In order to handle subsets of the colurnn set of these 
matrices in the sanie way, we set 

VJ := { V, I j E J }  and I J  := { I ,  I j E J }  

for any subset J of the branch set of N. 
A niatroid [12] is a pair (G, F )  of sets, G being its ground 

set and F being a set of subsets of G, called independent 
sets. An independent set of maximal cardinality is called 
base. The  dual  niatroidof (G, F )  is denoted by (G, F ) * ,  and 
the s u m  of the two matroids (G, F1) and (G, F2) is denoted 

Let Q ( p )  be a parameter dependent matrix that depends 
analytically on the parameter p E RA. The  colunin riiutroid 
M c ( Q )  of Q is defined to be tlie pair (#S, F ) ,  where 

by (G, F l )  v (G, F2) [12]. 

F := { X 5 S I 3,,Eg The  colurnn set X of 4(p)  is 
linearly independent }. 

The above definition is correct, i.e., M c ( Q )  is a matroitl. 

Input Matrices from (3) corresponding to  the network 
hl. 

Step 1 Find a common independent set B of max- 
imal Cardinality of M c ( K )  V M c ( M )  and 
M C ( A L C  + BLC)* such that ~ ( Z C  U VL) n BI 
is maximal. 

Step 2 If IBI < 2 b  - IL U CI, then goto Sing. 
Step 3 For 1 5 i , j  5 2 b  do the following: 

Set ( ) to  1,  and set all other 

elements of the i th line and j t h  column of that  
niat,ix Lo 0. De_note th_e resulting submatrices 

Find a common independent set f3 0,f max- 
imal cardinality of M c ( E )  V M c ( M )  an! 
M C ( ~ L C  + EL<:)* such that ! ( I C  U VL) n 81 
is maximal. 
If lgl < 2 b  - ] L  U Cl, then set I C , , ,  = 0. Other- 
wise, set k,,, = 1(1c U vL)  n & 
Print(“T1ie network is generically of index ”, 

Print( “TKe network is not solvable.”); End. 

A L C + B L C  ,,, 

by IC, M ,  and ALC + BLC. - 

Out  

Sing 
1 + 111iLXl<r,j<2b kt, ,  - ! ( IC  U VL) fI SI); End. 

Using this notation and denoting the cardinality of any 
set H by I H I ,  the algorithm is given in Table 1. 

The  following Theoreins imply the correctness of the al- 
gorithm. IJnfortunately, their proofs are too lengthy to be 
conveniently given here. (Although formulated differently, 
Theorems 3.1. and 3.3. have been known earlier [7-91.) 

3.1. Theorem: The following statements are equivalent. 

( i )  h/ is generically solvable. 

(ii) There is a coninion independent set  of M c ( K )  V 
M c ( M )  and M c ( A L ~  + BLC)* of cardinality 2 b  - 
IC U LI. U 

3.2. Tlieorem: Let A, B E L(R”,Rn) be 11 x I )  nmtrices, 
11 E N, sirch that (A, B )  is a regular pencil. Then 

1 + niax (deg,(aclj(sA + B))t,3) - degd det(sA + B) 
1 < I  r3 5’’ 

is tlie index of (A, B),  where adj(sA + B )  i s  the transpose 
of the matrix of cofactors of SA + B and deg, denotes the 

0 degree of a polyrioriiial in s. 

3.3. Theorem: Let B be a conimon independent set of 
Mr(I i )  V M c ( M )  and M C ( A L C  + BK)* of cardcnalcty 
2b - IC,’ U LI szrcli that I(Ic- U VL) n 01 is maximal. 
Then the degree of the polynomral s i-+ det(sA(p) + B ( p ) )  

0 eqtiuls I(lc- U VL) n BI generically. 

3-4. Tlieoreni: Let 1 5 i , j  5 2b and  let XLC + ELC,  F, 
M ,  i i r i d  k , , J  be ( I S  constructed in  Step 2 of the algorithm 
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given in Table 1 .  Then  k , , j  equals and 

1 - 1 1 . 1 . .  . . 
. - ] I  1 . . . . . . 
. . . . . I . .  . - I  i . . . . .  . l e 1 1  

0 generically. 

To see that the algorithm in Table 1 requires integer arith- 
metic only and that the number of operations to be per- 
formed is bounded by a polynornial in the number b of 
branches of the network, we remark the following. 

We can determine the generic rank of any subrnatrix of 
K ,  E ,  M ,  k ,  ALC: + B L C ,  and ALC: - + B L C ~  by using integer 
arithmetic. In case of K and K ,  this is obvious. For the 
remaining matrices, calculating the term rank [ la]  suffices. 
In any case, the number of operations performed is bounded 
by a polynomial in b .  

- - 

Finding the sets B and in Steps 1 and 3 of the algo- 
rithm is now simple by niatroid partition and intersection 
algorithms [12], 

Let us finally remark that the proposed algorithm can be 
easily adapted to conipute the number of input derivatives 
t,hat enter all or a certain part of network variables. 

where dots denote zeros. Symbolic calculations yield that 

det(sA(p) + B(p))  = 1 

and that the generic degrees of the elements of adj(sA(p) + 
B(P)) are 

2 1 3 3 2 2 

2 
1 

1 2 
1 

2 
1 

4 APPLICATION OF THE ALGORITHM TO A 
SIMPLE CIRCUIT 

2 
2 

2 
2 

1 
1 

1 
1 

Consider the network structure given in Fig. l ( a )  wliich 
consists of 1 branches. One can show that it is of generic 
index 1- 1, i.e., its generic index equals t he  nuiriber of reac- 
tances plus 1 .  In order to demonstrate how the algoritlirri 
given in the previous section works, we will apply it to the 
network shown in Fig. l (b ) ,  a special case of the structure 
from Fig. l (a) .  

The  matrices A(p) and B ( p )  of the Circuit Equations of 
the network from Fig. l (b)  are 

Hence, the generic index of the network is 4 = 1 + 3 - 0. 
We now calculate this result with the help of our algo- 

ritlini from Section 3 .  In Step 1, inatroid partition and 
intersection algorithms yield the coniinon independent set 

f3 = {%, VZ, v q , I I ,  1 2 , 1 3 , 1 5 ) .  

(Perforining these rnatroid algorithms by hand is rather te- 
dious. We therefore emphasize again that our algorithm is 
not intended to be performed by hand.) 

The  network is generically solvable since IBI = 7 = 10 - 3 
(Step 3), i.e., B is even a coinmon base. Further, 

(leg, det (sA(p)  + B ( p ) )  = I(IC; U V L )  n BI = 0 

- holds generically. 
Let us calculate B in Step 3 for the special case z = j = 6. 

M C . : ( k )  V MC:(&) and M c ( 2 ~ ~ c :  + EL,) have exactly the 
two bases 

{Vi,  VZ, h , Z 1 , 1 2 , 1 ~ , I ~ }  and { V 1 , v Z , V q , 1 1 , I 2 , 1 3 , 1 5 )  

i n  ~0111111011. The first yields inaxirnal I(Zc U V L )  n BI = 2.  
(Note that it is not necessary to know all common bases; the 
niatroid partition and intersection algorithms automatically 
give the maximal - the first here - c01111110n base.) Hence, 
k G , G  = 2. 

- 
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F i g u r e  1. (a) Simple network of gene r i c  iiidex 1 - 1. (b) N e t w o r k  n/ to w h i c h  the algorithm i s  applied. 

5 CONCLUSIONS 
An algorithm that computes the generic index of the Cir- 
cuit Equations of linear active networks has been given. I t  
uses integer arithmetic and does neither require symbolic 
calculations nor real arithmetic. The  number of operations 
to be performed is bounded by a polynomial in the number 
of branches of the network in question. The  algorithin is, 
however, by no means optimal; to  make it faster is a topic 
of future research. 

In addition to  the calculation of the generic index of the 
Circuit Equations of networks, the algorithm may also be 
used as a tool for proofs of theorems concerning the index. 
It can also be easily adapted to compute the nuniber of 
input derivatives that enter all or a certain part of network 
variables. 

The  algorithm has been formulated in terms of mat,roids; 
an equivalent formulation in terms of conjugate trees [I 31 is 
currently in preparation. Research should also be devoted 
to a generalization to  more general parameter dependent 
matrix pencils - including those corresponding to networks 
that contain ideal transformers - and to nonlinear DAE’s. 
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