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Abstract

In this paper we define classes of impasse points, an impqgrteanomenon of Differential-
Algebraic Equations (DAESs). Focussing on DAEs occuringhi@ analysis of electrical networks, a
brief discussion of properties of these classes and exanapiegiven. Some of these examples are

counterexamples to published assertions on impasse points
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Abstract A new method for an index one regular-
{sation of networks using a minimal number of ad-
ditional elements is presented. It is applicable to
linear electrical networks that may contain indepen-
dent voltage and current sources, time—invariant re-
sistors, capacitors, inductors, and nullator-norator
pairs. The algorithm uses the network topology
alone and is based on the concept of normal paira
of conjugate trees.

I. INTRODUCTION

Many real-world systems, especially electrical net-
works, can be modelled by differential algebraic equa-
tions (DAE). The index of a DAE plays a crucial role
concerning analytical and numerical properties [1-3].
On higher index problems (index greater than one)
small pertubations of the input-may cause arbitrary
large errors in the solution [2].

One approach to overcome the disadvantages related
to higher index problems in circuit simulation is the
modification of the electrical network. (A similar ap-
proach, the so—called feedback-regularization of control
systems has. been discussed in literature [4].) In this
context the following two problems may be formulated:

Problem 1 Regularization by augmenting the net-
work with additional elements such that the modified
network 1s generically of indez one.

Problem 2 (Optimal Network Regularization)
Solution of Problem I using a minimal number of
additional network elements.

In this paper, we consider the following modifications
to be admissible:

(i) Augmenting the network with either a resistor, a
capacitor or an inductor in series to an existing
branch.

(i) Augmenting the network with either a resistor, a
capacitor or an inductor as a new branch between
two existing nodes.
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The first problem has been solved early for RLC net-
works [5,6]. A recent result for active networks can be
found in [7, Cor. 4.10]. In this work we give an algo-
rithm to solve the Problem 2 for a class of linear active
electrical networks. QOur algorithm uses the topology
of the network only and is mainly based on the con-
cept of normal pairs of conjugate trees. Further, the
number of operations to be performed is bounded by a
polynomial in the number of branches of the network.

II. PRELIMINARIES

We confine ourselves to linear networks containing the
following types of elements: independent voltage and
current sources, time—invariant resistors, capacitors, in-
ductors, and nullator-norator pairs. Furthermore, we
assume the network graph to be connected.

Now, we consider such a network A consisting of b
branches and denote by p € R* the vector containing
all parameters of AV, i.e., resistances, capacitances, and
inductances. The circuit equations of A are given by

A(p)z + B(p) z = ¢(),

where A and B are parameter dependent 2b x 2b-
matrices, and = denotes the 2b-dimensional vector of
the branch voltages and the branch currents.

A network N is said to be generically solvable if the
associated matrix pencil (A(p), B(p)) is regular {8,1] for
all p belonging to an open and dense subset of R¥. A
generically solvable network N is said to be generically
of index v if ind (A(p), B(p)) = v holds for all p from
an open and dense subset of R*, where ind (A{p), B(p))
denotes the index of the pencil (A(p), B(p)) [1,9].

III. THE ALGORITHM

In order to formulate our algorithm in terms of the
network topology, we need to introduce some further
notation, cf. [10-13].

Definition 1 Lei G be the undirected network graph of
some network N. A pair (t1,t2) of spanning treest of
G is called a pair of conjugate trees (PCT) if

'We use the terms iree and forest [14} synonymously.



Table 1: Algorithm that yields a generically index one
network using a minimal number of additional network
elements

Network AV,

Supplement A by additional inductor
branches between each pair of different
nodes, which are not yet connected by one
branch. We denote the resulting network
by A",

Determine a normal pair of conjugate trees
(t1,ta) of N,

Construct a network A" that is obtained
from N as follows:

Input
Step 1:

Step 2:

Step 3:

(i) Augment A with either a resistor or
an inductor in series to each capacitor
branch of A not contained in ¢;.

Augment A with either a resistor or a
capacitor in parallel to each inductor
branch of A contained in #;.

Augment A with either a resistor or a
capacitor between each pair of nodes
connected by an inductor branch that
is contained in t; and A but not in

N.

Output | Network A",

(i) ty containes all norator branches, no nullator
branch, and some resistor, capacitor or inductor
branches, all voltage source branches, no current
source branches,

(ii) ts contains all nullator branches, no norator
branch, the same resistor, capacitor or inductor
branches as t;, and all voltage source branches, no
current source branches.

Let C and@ienote the sets of capacitor and induc-
tor branches of A, respectively, and let us denote the
cardinality of any set H by |H|.

Definition 2 A pair of conjugate trees (¢1,t3) is called
normal if it mazimizes the sum of the number of tree
capacitors and the number of co-tree inductors among
all pairs of conjugate trees of the network N in ques-
tion, i.e., if

max {|wy NC| + |L\ w1 : (wy,wz) is @ PCT of N'}
equals |ty N C| + |L\ t1].

The algoriihm is given in Table 1. Its correctness is
implied by the following Theorem:

Theorem 1 Let N be a network containing inde-
pendent sources, resistors, capacitors, inductors and
nullator-norator pairs only. Furthermore, we assume
that N is connected and has a pair of conjugate trees.
Then the network N''' obtained from the algorithm men-
tioned above solves Problem 2. :

Proof. Let us denote the set of inductor branches
of A" by L', which implies L C L'. We assume that
N has a PCT. The same branches constitute a PCT of
N, Hence, N contains a normal PCT (¢;,1,).

First, we show that J\:’ " is generically of index one.
For this purpose we consider the different modifica-
tions:

(a) Augmenting N’ with an additional branch in series
to each ¢ € C'\ t; yields a new network A} with a
PCT (tl uUC,ta U C)

(b) By augmenting N, with a branch in parallel to
each | € LNt and denoting the set of supple-
mented branches by Z, we obtain a network N}

with a PCT (t, UC U Z)\ L, (tUC U Z)\ L).

(c) Replacing each ! € t; N(L'\ L) by either a resistor

or a capacitor yields a network A/ with the same
PCT as Nj.

(d) Deleting each I € (L'\ L)\ t; yields a network N}
with the same PCT as N/

Now, if we choose the new branches in (a),(b) according
to step 3 (i),(ii) of our algorithm, we have N = N
The normal PCT of A/ contains no inductor branch
and all capacitor branches on N'"'. Hence, the network
N is generically of index one (7, Cor. 4.9].

In the next part we consider the generic complexity
o of N, i.e., the degree of s = det(sA'(p) + B'(p)) for
all p from an open and dense subset of R¥, where A’
and B’ are the matrices of the circuit equations of A”.
Let b’ denote the number of branches of A/, and let
Ab” ;= b" - b. We have (cf. [7, Th. 4.5))

a lCﬁt1|+lL'\t1|
ICl = 1C\ th] + |L'| = [L" Nty

ICl+IL|=1C\ G| = LNt = |(L\ L) Nt
——— S’ S e’
(b)} (c)?

(1)

In order to show that A"/ contains a minimal number
of additional network elements we consider a network
N consisting of b branches and obtained from A us-
ing the admissible modifications with resistor branches

(a)!
IC| + |L'| — Ab".

!Resulting from additional elerents according to step 3(i)-
(iii) in the algorithm



only (the other replacements can be treated similarly).
Assume A to be generically of index one and minimal.
Then, it can be verified that N may have been obtained
from A" using the following modifications only:

(M1) Augmenting A" with a resistor in series to a ca-
pacitor.

(M2) Augmenting A" with a resistor in parallel to an
inductor.

(M3) Augmenting N with a resistor as a new branch
between two nodes which are not yet connected by
one branch of A,

Let R, R and Ry denote the sets of additional re-
sistor branches that result from applying (M1), (M2)
and (M3). respectively. We denote a normal PCT of
AN by (_f, ,t2) and the number of additional branches by
Ab:=b—b = |Rc|+|Rp|+|RL/|. Because we assumed a
generic index one we have C' C t, and LNt; = @ [7, Cor.
4.9). The generic complexity of A is given by |C| +|L|.
Now, we modify A as follows:

(a) Contraction of each r € Re. The new network has
a generic complexity not less than |C|+ |L|—|Rc¢|.

(b)

Delete each » € Ry. The generic complexity will
be not less than |C| + |L| = |Rc| — |RL|.

(¢) Replace each r € R+ by an inductor. The lower
bound of the generic complexity remains the same
as in (b).

(d) Supplement the network by additional inductor
branches between each pair of nodes not connected
by one branch of A'. The generic complexity & of

the resulting network fulfills

ICl+ |L} = |Re| = [Rel + [L"\ L| = |Ry|
\C| + |L'| — Ab.

o 2

(2)
The network obtained here is nothing else than N,
Le., & a. Because of Eqs. (1) and (2) we have
Ab" < Ab, i.e., the network A" has a minimal number
of additional elements. =
Step 1 as well as step 3 of the algorithm require
at most b*> simple network modifications. The nor-
mal pair of conjugate trees (step (ii)) can be deter-
mined using the method proposed in [15]. This implies
that the number of operations of the whole algorithm
is bounded by a polynomial in b.

Corollary 1 (Te the proof of Theorem 1) Let
N, N €, L' and o be defined as above. Then the
minimal number of additional network elements lo
reqularize N using the admissible modifications is
equal to |C| + |L'| — .
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Figure 2: (a) Network A generically of index | — 1,
(b) Regularized Network N

IV. APPLICATIONS OF THE ALGORITHM

Example 1 Consider the network A given by Fig.
1{a). It is the linear counterpart of a so-called in-
verse system used to decode chaotically modulated sig-
nals [16]. This network is generically of index four. To
obtain the associated network A" we have to augment
N by a single inductor only. The normal pair of conju-
gate trees of A has been drawn in Fig. 1(b),(c) using
solid lines. In order to construct the network A" we
have to augment A with a first resistor or inductor in
series to the capacitor not in ty, and to replace the ad-
ditional inductor (contained in t;) by a second resistor
or a capacitor. Because the normal pair of conjugate
trees contains all capacitor branches and no inductor
branch (see Fig. 1(d),(e)), the network is generically
of index one. Note that the procedure proposed in [7]
would require three instead of two additional elements
as shown in Fig. 1(f).

Example 2 The network A given in Fig. 2(a) is
generically of index [—1 [17]. Applying the usual proce-
dure to regularize A/, one would require [ - 2 additional
elements. Using the algorithm presented here we have
to augment A by a single resistor only (Fig. 2(b)).
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Figure 1: (a) Network AV, (b),(c) Network A" with a normal pair of conjugate trees, (d},(e) Resulting network A"
with a normal pair of conjugate trees, (f) Network modified as in (7] without optimization
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