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Abstract

The structure at in�nity of a matrix pencil can be ob-

tained by rank determination of Toeplitz matrices. We

show that the generic rank of these matrices equals the

structural rank. Thus the Toeplitz matrix approach is

also suited for investigations of structure matrix pencils.

Computational results underline the e�ciency of this ap-

proach.

Introduction

The structure at in�nity of matrix pencils (sE�A), where

E;A 2 R

p�q

, plays an important role in control theory.

It provides information about disturbance decoupling [2],

input/output decoupling [3], as well as di�culties to be

expected if you want to solve the system E _x = Ax nu-

merically.

In this paper we deal with structure matrix pencils

[sE � A]. For this purpose, only the "structure" of the

matrices E and A is taken into account by mapping them

into binary matrices [E] and [A].

Known approaches analyzing the structure at in�nity

[5, 7] essentially exploit the fact that the structure is re-

lated to the maximum degrees of some minors of [sE�A].

We propose another method: The structure at in�nity of

matrix pencils can also be determined by means of the

rank of Toeplitz matrices. We show that the generic rank

of these matrices equals the structural rank. Thus the

Toeplitz matrix approach can be adapted to structure

matrix pencils. A related result can be found in [8].

Using bipartite-matching algorithms for structural

rank determination we obtain an algorithm for determin-

ing the structure at in�nity of structure matrix pencils,

which has the same complexity as the used matching al-

gorithm.

The paper is organized as follows: First we provide

some notions and preliminaries concerning the structure

at in�nity of matrix pencils (sE � A). Then we deal

with structure matrix pencils [sE�A] and state our main

result: the equality of the generic and the structural rank

of a certain type of Toeplitz matrices. Finally we report

the computational results.

Preliminaries

Consider a (singular) matrix pencil (sE � A), where

E;A 2 R

p�q

. Its normal rank is de�ned by � :=

max

s2C

(sE � A). Every matrix pencil can be brought

into the Kronecker Canonical Form (KCF) (cf. [4]) by

premultiplication with a nonsingular matrix P 2 R

p�p

and postmultiplication with a nonsingular matrix Q 2

R

q�q

:
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Jordan matrix. E

sing

and A

sing

contain the singular part

of (sE�A). Its structure is not needed in this paper. The

structure of N , i. e. the sizes �
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; �
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; : : : (�

i

� �

j

for i < j)

of the 1st, 2nd, : : : Jordan block, is called the structure

at in�nity of (sE�A). Counting all Jordan blocks of the

same size we obtain a list
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where �

i

= cardf�

j
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= ig . The integer n

�

represents

the size of the largest Jordan block of N , and it is called

the index of (sE �A).

The integers �

�

can be obtained by determining the

maximum degree of all minors of size rkE + � as well as

the maximum degree of all minors of size rkE+��1 (cf.

[7]):
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Now consider a block Toeplitz matrix

M
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The following Lemma 1 is an immediate consequence

of [6], Corollary 1: The structure at in�nity of

(sE � A) can be obtained by rank determination of

M

1

(E;A);M

2

(E;A); : : : ;M

n

�

+1

(E;A).

Lemma 1

8� 2 N : ��rkM
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X

i=�

�

i

(3)

We now state a lemma, which turns out to be the key for

our main result in the next section. A product of matrix

elements, each of which occupying di�erent columns and

rows, is a term of a minor of the matrix under considera-

tion. By a term U (or T ) of (sE �A) (or M

�

(E;A)) we

mean a term of a minor of (sE �A) (or M

�

(E;A)).

Lemma 2 For every � 2 N there exists a term U :=

s

�

e

i

1

j

1

� � � � � e

i

�

j

�

�a

k

1

`

1

� � � � �a

k

�

`

�

of (sE�A) de�ning a

term T := e

�

i

1

j

1

� � � � � e

�

i

�

j

�

� a

��1

k

1

`

1

� � � � � a

��1

k

�

`

�
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such that

jT j = rkM

�

(E;A):

Proof (Sketch) Choose U as a term that determines the

maximum degree of all minors of size (rkE +

P

��1

i=1

�

i

).

Using (1) and (2), we obtain the degree of U (i. e. the

number of E-elements in U):

degU = � = rkE �

��1

X

i=1

(i� 1)�

i

Now, the statement can be ver�ed exploiting (3) by direct

calculation.

Main Result

We turn now to structure matrix pencils [sE � A], i. e.

we suppose the entries of the matrices E and A are not

precisely known. More exactly, we distinguish between

two types of entries: entries that are �xed to zero and

entries that are assumed to be mutually independent. In

this way the real matrices E and A are replaced by binary

structure matrices [E] and [A] of the same size.

De�nition 1 The entries of a structure matrix [M ] are

either �xed to zero or indeterminate values. By �xing

all the indeterminate entries of [M ] to some particular

real values we obtain an admissible realization M of the

binary structure matrix [M ]; for short, we write M 2

[M ]. Two matrices M

0

2 [M ] and M

00

2 [M ] are called

structurally equivalent.

Each admissible realization M 2 [M ] where [M ] pos-

sesses h > 0 indeterminate entries can be interpreted as

an element of a vectorspace R

h

. We say that a matrix

property holds structurally for [M ] if this property holds

for almost all M 2 R

h

. Here "almost all" means "for

all exept for those in some proper algebraic variety in

R

h

" (comp. [10]). For example, the structural rank of

[M ] is a very important structural property of the set of

structurally equivalent matrices. It is de�ned by

s-rk [M ] = max

M2[M ]

rk (M)

Similarly we can de�ne structural properties of matrix

pencils [sE � A], taking the two structure matrices [E]

and [A] into account. The structure at in�nity of struc-

ture matrix pencils is a structural property. It can be

determined by computing the generic rank of M

�
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for all � 2 f1; 2; : : : ; n

�

+1g. Note that we must take the

dependencies between the various [E] as well as between

the various [A] into account. Therefore the generic rank

can di�er from the structural rank where all entries are

considered to be independent:

g-rkM

�

[E;A] � s-rkM

�

[E;A]

Now we are able to formulate our main result.

Theorem 1 8� 2 N : g-rkM

�
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�
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Proof (Sketch) First realize that Lemma 2 is also valid

for structure matrix pencils. Thus we choose a term U :=
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[E;A] with jT j =

g-rkM

�

[E;A]. The term T has a special property: Since

all elements e

ij

of U appear � times in T and all elements

a

ij

of U appear (� � 1) times in T , this term T exists

exactly once in a certain jT j-sized minor of M

�

[E;A].

This means that the minor under consideration cannot

vanish for almost all E 2 [E] and A 2 [A].

Now we assume s-rkM

�

[E;A] > g-rkM

�

[E;A]. Then

there is a term T

0
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with jT

00

j > jT j. The generation of the term U

0

is quite

a long procedure, applying graph-theoretic tools. Due to

lack of space, we omit this part of the proof. The whole

procedure can be found in [9].

Now we use the same arguments for T

00

as for T to

prove that a jT

00

j-sized minor of M

�

[E;A] containing T

00

cannot vanish for almost all E 2 [E] and A 2 [A]. Thus

jT

00

j � g-rkM

�

[E;A] = jT j, contradicting jT

00

j > jT j.



Computational Results

In the previous sections we have shown that the structure

at in�nity of structure matrix pencils [sE�A] can be ob-

tained by determining the structural rank ofM

�

[E;A] for

all � 2 f1; 2; : : : ; n

�

+ 1g. Bipartite-matching algorithms

are very e�cient for computing the structural rank of

matrices (cf. [1]). The complexity bound for the compu-

tational e�ort of bipartite-matching problems is known to

be O(

p

nm log(n

2

=m)= logn , where n is the sum of rows

and columns, and m is the number of nonzero entries of

the matrix.

Since the index (i. e. the size n

�

of the largest Jor-

dan block in N) of [sE � A] is smaller than a number k

in all practical cases (say k = 4), the bound mentioned

above is also valid for the determination of the structure

at in�nity.

Table 1 shows the computational results for index-

1 and index-2 problems, using a Sun UltraStation 1

Model 170 workstation. We applied a C implementa-

tion of a push-relabeled algorithm (available on http://

www.cs.sunysb.edu/~algorith/ implement/ bipm/ imple-

ment.shtml) as a basis for our in�nite-structure algo-

rithm. 1% of the entries of the n� n structure matrices

[E] and [A] are chosen as nonzero elements. The last col-

umn of Table 1 shows the practical complexity c of the

computational e�ort depending on the dimension n. The

results show that our method is well suited even for large

systems.

Dimension 500 1000 2000 4000 c

Index 1 0.18 0.47 1.80 6.64 1.8

Index 2 0.28 1.14 4.20 14.67 1.9

Table 1: Computational Results (in secs.)
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