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Abstract—This paper addresses a feedback stabilization prob-
lem for linear time-invariant dynamical systems where the
feedback control loop is closed over a noiseless time-variant
and rate-limited communication link. In contrast to the previous
work, we assume a set of scalar quantizers and propose a method
for stabilizing the system at reduced data rates.

I. INTRODUCTION

Historically, communication and control have been sepa-
rate research areas with more or less independent theories.
Recently, however, there has been an increasing demand on
networks consisting of control and communication systems
which are subject to uncertainty and limited time-varying
channel capacity. In such applications, due to finite capacity,
the system state cannot be represented with high precision at
the output of the communication channel, and only a distorted
version of system state or system output is available for
feedback. Therefore, the fundamental questions raised here is
to find encoders, decoders and controllers to achieve certain
performance objectives associated with the control and com-
munication subsystems. In this paper, the primary performance
objective is stabilization of the dynamical system with simple
scalar quantization schema and, once the system is stabilizable,
the main problem is how to ensure stabilization with data
rates as small as possible. The problem is of great interest
in wireless sensor networks where the energy consumption
for transmission is to be minimized in order to maximize the
network life time.

Various publications have introduced necessary and suffi-
cient conditions for observability and stabilizability of such
a basic communication/control systems in various senses [1],
[2], [3], [4], [5], [6]. These conditions are often given in the
form of a lower bound on the channel capacity in terms of rate
of the change of dynamical system. In particular, it is shown
[2] that the minimum capacity required for achieving observ-
ability and stabilizability of linear time-invariant discrete-time
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plants is given by

Rg :=
∑

i

max{0, log2 |λi|}, (1)

where λi are an eigenvalue of the system’s coefficient matrix.

A. Paper contribution

This paper generalizes previous work in three directions:
1. In contrast to [2], we assume a set of scalar quantizers
(one for each system state variable) and consider the problem
of optimal quantization encoding for noiseless control system
with perfect system state observation at the system output in
the sense of minimizing the difference of Lyapunov functions.
Surprisingly, it turns out that an optimal encoding (optimal bit
allocation) is independent of actual system state, which makes
the scheme amenable to practical implementations. Further, we
provide a lower bound on the bit rate which is sufficient to
achieve the stabilization under scalar quantizers. This bound
quantifies the amount of extra bits that are required if scalar
quantizers are used instead of an optimal vector quantizers.
Finally, we will take into account variations in the capacity of
the communication link.
2. We extend the results to noisy control systems with
imperfect system state observation at the system output by
estimating the uncertainty set under Kalman filtering.
3. We provide a heuristic method to stabilize system with
minimum bit rate.

The proofs are omitted due to the lack of space.

II. SYSTEM MODEL

We consider a feedback control system consisting of a plant,
system state estimator and controller, in which the information
about the system states is communicated to the controller
via finite-capacity wireless communication link (including one
transmitter and one receiver). The underlying system model is
illustrated in Figure 1. The dynamics of a plant to be controlled
evolves according to a discrete-time linear system of the form:

x(k + 1) = Ax(k) +Bu(k) +w(k) (2a)
y(k) = Cx(k) + v(k) (2b)
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Fig. 1. The underlying system model

with k ∈ N+, x(k),w(k) ∈ Rn, A ∈ Rn×n, u(k) ∈ Rm,
B ∈ Rn×m, y(k),v(k) ∈ Rq , C ∈ Rq×n and n,m, q ∈ N.1

Here and hereafter, x, y and u are the system state, system
output and system input, respectively; the vector w denotes
the disturbance to the system and it is modelled as a zero-
mean random variable distributed according to some given
probability distribution function; v is a random variable rep-
resenting the noise attached to the observation, we assume the
distribution of v has bounded support.

The system state x is in general not directly observed at
the system output. Therefore the full system state information
must be estimated using system output y over time by system
state estimator. Since the system estimated system state x̂ is a
real-valued variable, it must be quantized prior to transmission
via the communication link due to constraints on transmission
rates. The quantization is performed by an adaptive quantizer
whose output is fed to the transmitter. At the receiver side,
an adaptive dequantizer attempts to reconstruct the estimate
and provides the receiver-side system state estimate x′ to the
controller. We assume that the system input u is the image of
x′ under a linear map:

u(k) = Kx′(k), k ∈ N (3)

where x′(k) is the received system state estimate at time point
k and K ∈ Rm×n represents a time-invariant linear controller.

Throughout the paper, the wireless communication link is
modelled as an error-free finite-capacity communication chan-
nel whose capacity may vary over time. The time variations
should capture inherent fading effects in wireless communica-
tions channels, while the assumption of an error-free channel
requires the use of appropriate coding strategies including
forward error correction (FEC), ARQ, etc.

1Throughout the paper, N, N+, R and R+ denote the sets of nonegative
integers, positive integers, real numbers and nonnegative real numbers, re-
spectively.

III. STABILIZATION WITH SCALAR QUANTIZERS FOR A
NOISE-FREE SYSTEM WITH PERFECT SYSTEM STATE

OBSERVATION

Let us first consider stabilization problem of a noise-free
control system with perfect system state observation at the
output of the system, that is to say, we have y(k) = x(k) and
w(k) = 0 in this case.

A. Scalar Quantization

Different quantization designs were proposed (see for in-
stance [7], [8], [2]). In particular, Reference [2] proposed a
quantization scheme that ensures stability of a control system
in which the communication link operates at a data rate given
by the eigenvalue rate condition (1). This scheme is however
based on vector quantization, and therefore has a prohibitively
high computational complexity if the number of system states
n is large, in which case it is not amenable to practical
implementations. In order to reduce the complexity, this paper
considers the possibility of using a set of scalar quantizers,
each for one system state variable.

Let qi : R → R be a uniform mid-tread quantizer for the
ith system state variable xi, 1 ≤ i ≤ n. We have

qi(xi) =


b li−ci

2∆i
+ 1

2c∆i + ci, if xi − ci ≥ li/2
−b li−ci

2∆i
+ 1

2c∆i + ci, if xi − ci < −li/2
bxi−ci

∆i
+ 1

2c∆i + ci otherwise

with li ∈ R+, ci ∈ R, ∆i = li/Mi (Mi is an odd integer due
to the symmetry). Here and herafter, ci is the centroid and
[−li/2 + ci, li/2 + ci] is the interval, in which the quantizer
is not saturated. Mi is the number of the quantization levels
and ∆i = li/Mi is the minimum quantization interval. As
aforementioned, we have n such scalar quantizers for each
system state variable so that, given some x(k), the quantiza-
tion process (denoted by Q) is a map from Rn into Rn defined
to be Q(x(k)) = (q(x1(k)), . . . , q(xn(k)))T , k ∈ N.

Let l = (l1, . . . , ln), c = (c1, . . . , cn) and M =
(M1, . . . ,Mn) and note that these parameters may vary with
time so that the quantizer Q depends on k. In what follows,
we use l(k), c(k) and M(k) to denote the values of these
parameters at time k. Let Ri = log2Mi with Ri(k) being
the value of Ri at time k. Then, for any k ∈ N, Ri(k)
bits are used to encode one system state xi(k). The vector
R = (R1, . . . , Rn) ∈ Rn

+ is called rate or bit allocation and
R(k) is the value of R at time k.

Assuming that none of the n scalar quantizers is saturated,
in which case |xi(k)− ci(k)| ≤ li(k)/2 for all i = 1, . . . , n,
the quantization error e(k) := Q(x(k))−x(k) is bounded by

‖e(k)‖ ≤
(∑

i
∆2

i (k)
) 1

2
/2 (4)

with ∆i(k) = li(k)/2Ri(k), k ∈ N. Given k, let L(l(k), c(k))
be the compact subset of the system state space where the
quantizer Q is not saturated.

B. Uncertainty Set of System



Due to the rate limitations, there is an inherent uncertainty
about the system state at the controller. The set of all possible
values of the actual system state is called uncertainty set of
the system state. If this uncertainty could be removed at the
controller, we would have a classical control problem. Now
the key idea is to remove this uncertainty asymptotically as
k →∞ using suitable dynamic quantization.

To be more precise, let Ω0 be the initial uncertainty set
which is assumed to be compact with non-empty interior and
known to the quantizer and dequantizer. The quantizer sends
an index of the quantizer cell containing the actual system
state to the dequantizer, which can decrease the uncertainty
about the system state to one quantization cell denoted by Ω′0.
Now, given Ω′0, the uncertainty set of the system state for the
next time Ω1 is predicted at the quantizer and dequantizer.
Note that Ω1 certainly contains the system state x(1) as it
contains all possible system states evolving from the system
states in Ω′0, and therefore in particular from x(0) ∈ Ω′0. The
whole procedure is repeated with Ω1, which is illustrated in
Figure 2. We will show that both quantizer and dequantizer
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Fig. 2. Evolution of Uncertainty Sets.

can predict the uncertainty sets independently so that Ωk and
Ω′k are known to both sides of the communication link for all
k, provided that there is the transmission is error-free, which is
true by the assumption. If the transmission rate is sufficiently
large, we will show that the uncertainty about the system state
disappears as k →∞.

The following two questions arise immediately: 1) How to
choose the quantizer-dequantizer pair (including L(l, c) and
the rate allocation R) and 2) how to predict the uncertainty
set Ωk+1 when Ω′k is given. In what follows, we are going to
address these questions.

C. Scalar Quantization Design and Bit Allocation

Under the assumption of an error-free communication link,
the control signal u is of the form (3) where x′ = Q(x) is the
quantized system state. It is assumed that the controller K is
chosen such thatA+BK is stable (i.e. ∀i|λi(A+BK)| < 1),
meaning that K stabilizes (2) in the classical deterministic
setting. Since

Q(x(k)) = x(k) + e(k),

where e(k) ∈ Rn is the quantization error at time k, it follows
from (2) that the system is governed by the following equation:

x(k + 1) = Ax(k) +Bu(k)
= Ax(k) +BKQ(x(k))
= (A+BK)x(k) +BKe(k) .

(5)

For our analysis of system stability, let V (x) = xTPx
with a positive definite matrix P ∈ Rn×n be a candidate
for a Lyapunov function. The difference of the values of the
Lyapunov function at two successive time points ∆V (x(k))
is an important ”measure” of the system stability. Intuitively,
minimizing ∆V (x(k)) means that the system is stabilized as
fast as possible for some P . Considering (5) yields

∆V (x(k)) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

= xT (k)((A+BK)TP (A+BK)− P )x(k)

+ 2xT (k)(A+BK)TPBKe(k)

+ eT (k)KTBTPBKe(k)

In all that follows, let P and Q be symmetric positive definite
matrices such that (A+BK)TP (A+BK)− P +Q = 0.
Note that as A+BK is stable (by assumption), such matrices
exist [9]. With this choice of P and Q and with (4), we can
bound ∆V (x(k)) as follows

∆V (x(k)) ≤ ∆V ′(x(k))

:=‖(A+BK)TPBK‖
(∑

i
∆i(k)2

) 1
2 ‖x(k)‖

+
‖KTBTPBK‖

4
(
∑

i
∆i(k)2)− λmin(Q)‖x(k)‖2 (6)

where λmin(Q) > 0 denotes the smallest eigenvalue of Q.
This bound is valid if none of the quantizers is saturated, i.e.,
x(k) ∈ L(l(k), c(k)). Note that ∆V ′(x(k)) depends on R, l
and x(k). We often write ∆V ′(x) for brevity.

We now design a quantizer Q, which depends on k,
that minimizes ∆V ′(x) at every time step under the rate
constraints: ∀k

∑
iRi(k) ≤ Rtot(k), where Rtot(k) is the

maximum number of bits that may be communicated over the
channel at time k, which is assumed to be known at both sides
of the channel. In practice, 2Ri(k) or even Ri(k) need to be
integers, a constraint we will neglect throughout. Put in a more
formal way, the problem is:

Problem 1. Given x ∈ Rn, Rtot ∈ R+, and Ω ⊆ Rn compact
with non-empty interior,

minimize ∆V ′(x)
s.t. R1 + · · ·+Rn ≤ Rtot and Ω ⊆ L(l, c)

in variables l,R ∈ Rn
+ and c ∈ Rn.

Note that this problem must be solved at both quantizer and
dequantizer independently, although the dequantizer has no di-
rect access to ∆V ′(x(k)). The constraint Ωk ⊆ L(l(k), c(k))
ensures that the quantizer is not saturated, which implies
x(k) ∈ L(l(k), c(k)). The latter condition cannot be used
since only Ωk is known to both the quantizer and dequantizer.



The above problem can be divided into smaller problems
that can be solved separately. We first observe that components
c and l of solutions (l, c,R) to Problem 1 are independent of
both x and Rtot, which is quite intuitive.

Proposition 1. Let x, Rtot and Ω be as in Problem 1, assume
BK 6= 0, and let (l, c,R) solve Problem 1. Then (l, c) is
uniquely determined by

(l, c) = arg min
(̃l,c̃)

volume{L(̃l, c̃) ⊂ Rn|Ω ⊆ L(̃l, c̃)}.

In particular, if Ω is the image of L(l′, c′) under a non-
singular matrix A, Ω = AL(l′, c′), then

l = |A|l′, c = (A+BK)c′,

where |A| denotes the matrix with entries |Ai,j |.

We now determine bit rates Ri(k) that minimize ∆V ′(x(k))
when l(k) and c(k) are already known.

Proposition 2. Let x, Rtot and Ω be as in Problem 1, assume
BK 6= 0, the optimal R∗i has the form

R∗i = max{0, w − log2

1
li
}

with some w ∈ R satisfying
∑

i max{0, w − log2
1
li
} = Rtot.

The special structure of the solution suggests an efficient
method of solution. In fact, it can be solved by a water-filling
procedure [10]. The solution, roughly speaking, would allocate
most bits to the most “uncertain” system states, i.e., to those
states xi(k) for which li(k) is large.

For later reference, we summarize the results of this section.

Corollary 1. Let x, Rtot and Ω be as in Problem 1, assume
BK 6= 0 and Rtot ≥ 0. Then Problem 1 has a unique solution
(l, c,R), which is given by Propositions 1 and 2. That solution
does not depend on x, and its components l and c do not
depend on Rtot either.

D. Stability of Closed Loop

Now let us look at the stability of the closed loop under the
proposed quantization. The solution of (5) is given by

x(k) = (A+BK)kx(0) +
k−1∑
i=0

(A+BK)k−1−iBKe(i) .

Hence, if A + BK is stable, the state x(k) vanishes as
k →∞ if the error e(k) does [2, Lemma 5.1]. The latter can
not, in general, be guaranteed if a traditional (non-adaptive)
quantizer is used [1, Proposition 2.1]. The main question
here is under which conditions on Rtot(k), scalar quantization
using adaptive bit allocation as proposed in this paper would
guarantee limk→∞ e(k) = 0. We present a sufficient condition
under which, roughly speaking, the uncertainty sets keep
shrinking uniformly for all time.

Theorem 1. Let x(0) ∈ Ω0, Ω0 ⊆ Rn compact with non-
empty interior, and let Rtot be a sequence of reals. Of the

closed loop (5), assume that BK 6= 0, A + BK is stable,
and A is non-singular with

Rtot(k) ≥ α >
n∑

i=1

max{0, log2 γi} (7)

for all k and some α, where γi =
∑n

j=1 |Ai,j |. Finally,
let the quantizer Q of (5) be determined by solutions
(l(k), c(k),R(k)) of Problem 1 with x(k) and Rtot(k) sub-
stituted for x and Rtot, respectively. Then limk→∞ x(k) = 0
for the closed loop (5).

Let us compare the bound (7) with the capacity bound
(1), which is sufficient for system stabilization under optimal
vector quantization [2]. We assume here that all eigenvalues
of A have magnitudes greater than or equal to 1.

Let SA be the diagonal matrix defined by (SA)i,i =
1/max{1, γi} and set Rb = − log2 detSA. According to
Theorem 1, any rate larger than Rb is sufficient for the pro-
posed quantization method to stabilize the control system. If
Y A = SAA, then |detY A| = |detSA| |detA| = |det A|

2Rb
=

2Rg−Rb , and |detY A| ≤ 1 as ρ(Y A) ≤ ‖Y A‖∞ ≤ 1. Hence,
Rb ≥ log2 det |A| = Rg and

Rb = log2

∣∣∣∣ detA
detY A

∣∣∣∣ = Rg − log2 |detY A| .

Thus, − log2 |detY A| is the price to pay in terms of extra
bit rate needed for stabilization when computationally simpler
scalar quantizers are used instead of a vector quantizers.

IV. UNCERTAINTY SET ESTIMATION FOR NOISY SYSTEM

So far we have assumed that the system is noiseless and
the system state is fully observable at the system output. This
section extends the results to systems with disturbances and
imperfect system state observation. Our system is discribed
by equation (2). The classical Kalman Filter is used as a
system state estimator [11], [12]. Now the partially observed
linear quadratic stochastic control problem (called LQG) is
separated into two optimization problems: optimal estimation
problem (with respect to MMSE criterion) and deterministic
linear quadratic optimal control problem (LQR).

The main question is how to estimate the uncertainty set in
this case. As in the noiseless case, the key idea is to make
quantization error vanish along with time by predicting the
increment of the uncertainty set of the system state based
on the system dynamics and by decreasing the uncertainty
set with the received information. The essential difference
compared to the noiseless case is that, instead of the actual sys-
tem state x(k), an estimated system state x̂(k) is transmitted
that evolves according its own dynamics. So the method for
decreasing uncertainty in this case is the same as described
in section III-B except that the uncertainty set of estimated
system state x̂ must vanish with time as well.

As the prediction problem is more complicated, we have to
deal with a more general structure of the uncertainty set. In
this paper, the uncertainty set Ω̂′k for the estimated system state



x̂ is assumed to be a convex polyhedron, i.e., Ω̂′k = P(M ,d),

P(M ,d) := {x|Mx ≤ d}

for some M ∈ Rm×n and d ∈ Rm. The point is that images
of P(M ,d) under non-singular linear maps can be easily
determined from M and d [13, Lemma III.6].

In what follows, we use the following notation V =
E{v(k)v(k)T }, x̂k|s := E{x(k) | y(0), . . . ,y(s))} and
Σk|s := E{(x(k) − x̂k|s))(x(k) − x̂k|s)T }. Start with prior
mean and error covariance x̂0|−1 = x̂−1|−1 = E{x(0)}
and Σ0|−1 = X0, for t = 0, . . . , N . Define Lk =
Σk|k−1C

T (CΣk|k−1C
T + V )−1 and set x̂(0) = L0y(0).

Then, it can be shown [11], [12] that the estimated system
state x̂ under the Kalman filter satisfies

x̂(k + 1) =(I −Lk+1C)(A+BK)x̂(k)
+Lk+1x(k + 1) +Lk+1v(k + 1)

(8)

where x̂(k) := x̂k|k. The following proposition provides the
solution of this estimation problem.

Proposition 3. Let x̂ satisfy (8) at time k and let v(k) be
a bounded random variable with ‖v(k)‖∞ ≤ V for all k. If
x̂ ∈ Ω̂′k = P(M ,d), then, for arbitrarily small ε > 0,

Pr
[
Ω̂k+1 ⊆ P(MG−1,d+ V s+ h)

]
> 1− ε

where G = (I − Lk+1C)(A + BK) is invertable,
the i-th entries of s ∈ Rn and h ∈ Rn are si =
‖(MG−1Lk+1)i∗‖2 and hi = ‖(MG−1Lk+1C)i∗‖2(‖A +
BK‖2 maxΩ̂k

‖x̂(k)‖2 + ‖ε(k)‖2), respectively, and ε(k) ∈
Rn with εi =

√
Σk+1|k,i/ε.

By the proposition, given Ω̂k, we can predict the uncertainty
set Ω̂k+1 on both sides of the communication link by using
the system equation (8). Therefore, the quantization scheme is
similar to that for the noiseless case except that the underlying
dynamical system is that of the estimated system state x̂(k).

V. STABILIZATION WITH MINIMUM BIT RATE

Our goal so far has been to minimize ∆V (x) subject
to some constraints. Alternative strategy is to reduce the
transmission rate by keeping the values of ∆V (x) negative,
in which case the system is driven to its equilibrium point
with a low effort. Such an approach is of interest to numerous
applications in wireless sensor networks, where the primary
objective is to save the energy consumption at sensor nodes.

The following proposition provides a basis for the design
of heuristic approaches to the problem.

Proposition 4. Consider (5) and suppose that A + BK is
stable. Let T = (A+BK)TPBK and

Φ =
1

2λmin(Q)
(‖T ‖+

√
‖T ‖2 + λmin(Q)‖KTBTPBK‖) .

If there is a quantizer-dequantizer pair such that the following

constraints hold for all k with some (sufficiently small) ε > 0:

Φ ·
√∑

i

(
li(k)/2Ri(k)

)2

≤ ‖x(k)‖ − ε (9a)

L(l(k), c(k)) 3 x(k) (9b)

then ∆V (x(k)) < 0 for all k and V (x(k)) = xT (k)Px(k)
is strictly decreasing with respect to k.

This proposition is an immediate consequence of (6).
Roughly speaking, if the quantizer parameters l and R are
chosen to fulfill the constraints (9a) and (9b) at each step, then
∆V (x) is negative for all k and the system state approaches
the equilibrium point arbitrarily closely. In particular, l in (9a)
can be chosen to be equal to l∗ specified by Proposition 1.

Now since ‖R(k)‖1 ≤ Rtot(k) must hold for all k ∈ N,
the problem can be formulated as follows:

min‖R(k)‖1

s.t. Φ ·
(∑

i
(li(k)/2Ri(k))2

)1/2

≤ ‖x(k)‖ − ε (10a)

‖R(k)‖1 ≤ Rtot(k), Ri(k) ≥ 0 i = 1, . . . , n (10b)
Ωk ⊆ L(l(k), c(k))

for some sufficiently small ε > 0. It must be emphasized that
due to (10b), this problem is not always feasible. Indeed, if
Rtot(k) is small enough, there are no ε > 0 and R(k) for
which (10a) is satisfied. In such cases, however, we can switch
to the previous transmission strategy to minimize ∆V (x).

An optimal rate allocation can found using Lagrangian
theory. It may be shown that an optimal rate allocation (in
the sense of the above problem) is of the form

R∗i = max {0, 1/2 log λ∗γl2i }

where γ = Φ ln 2(
∑

i(li/2
R∗

i )2)−
1
2 and λ∗ > 0. The exact

solution can be calculated using a water-filling algorithm.
It is important to mention that in contrast to Problem 1,

the optimal rate allocation here does depend on the actual
system states ‖x‖ so that only the quantizer can calculate
the optimal rate allocation. In practice, however, there is a
finite number of possible transmission rates (achievable with
different coding or modulation strategies). So, the quantizer
can inform the dequantizer about the transmission rate together
with the quantized information so that the dequantizer can
reconstruct the system states correctly.

VI. SIMULATION RESULTS

We consider a noiseless system with perfect system state
observation given by

A =


0.94 20.12 0.06 0.08
−0.05 10.1 −0.05 0
0.26 −5.12 1.14 −0.08
−0.04 −10.12 −0.06 0.82


and B =

(
0 1 0 4.5

)T
. The coefficient matrix A is

unstable with eigenvalues approximately 10, 1.3, 0.9 and 0.8,
and the feedback K = (−0.0354,−11.198,−0.0398, 0.0016)



stabilizes the system in the classical, deterministic setting. In
particular, A + BK is stable with spectral radius approxi-
mately 0.94. Here, the rate (1) necessary for stabilization is
4 bits at every time instance, while, according to Theorem 1,
our method of scalar quantization using adaptive bit allocation
would require 14 bits. In what follows we consider the total
bit rate Rtot(k) an independent random variable which is
uniformly distributed on [10, 20] for every k. The initial system
states are equal and chosen randomly from [−2, 2].

A. System Stabilization with Different Rate Allocations

Figure 3 shows the system evolution under different quan-
tization methods. In the top plot, the rates are allocated

Fig. 3. System Evolution with Different Bit Allocation

uniformly among the system states, while an optimal rate
allocation (in the sense of Problem 1) was used in the
simulation depicted in the bottom plot. Under an optimal rate
allocation, the system with converges significantly faster.

B. Stabilization with Minimum Bit Rate

The two plots in Figure 4 shows the system evolution
with different transmission strategies. The top plot shows the
system behavior when ∆V (x) is minimized (as in Problem
1)), whereas the bottom plot uses a heuristic strategy discussed
in the previous section (which is optimal in the sense of
Problem (10)).

Finally, Figure 5 depicts an histogram of the transmission
rates that are allocated under the two different quantization
strategies. We can observe a trade-off between the convergence
speed of the system and the number of bits that are used for
transmission.
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