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Abstract

Impasse point is a phenomenon of Differential-Algebraic Equations
(DAEs), which also occurs in the analysis of electrical networks. It
is usually characterized by the condition that solutions of the DAE
in question cannot be continued beyond this point. However, it turns
out that several classes of impasse points, each of which represents dif-
ferent behavior of the DAE, do exist. In this paper, relations between
these classes and between impasse points and pseudo limit points are
examined for the first time. Sufficient conditions for a point to be an
impasse are given and the existence of maximal continuated solutions
is proved. Considerations include non-autonomous and degenerate
DAEs as well as non-differentiable solutions. Further, not any set
occuring in the analysis of DAEs is assumed to be a manifold.
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Abstract

Impasse point is a phenomenon of Differential-Algebraic-Equations (DAEs), which also oc-
curs in the analysis of electrical networks. It is usually characterized by the condition that
solutions of the DAE in question cannot be continued beyond this point. However, it turns out
that several classes of impasse points, each of which represents different behavior of the DAE,
do exist. In this paper, relations between these classes and between impasse points and pseudo
limit points are examined for the first time. Sufficient conditions for a point to be an impasse
are given and the existence of maximal continuated solutions is proved. Considerations include
non-autonomous and degenerate DAEs as well as non-differentiable solutions. Further, not any
set occuring in the analysis of DAEs is assumed to be a manifold.

1 Introduction

Impasse point is a phenomenon of Differential-Algebraic-Equations (DAE). It occurs in the analysis
of electrical networks and has to be dealt with if the global equations of state of the network in
question do not exist.

As an example, consider the simple normalized circuit shown in Fig. 1. Let branch L be an
inductor of inductance 1 and D be a tunnel diode with voltage-current-relation (VCR) G'p, which
is shown in Fig. 1 as well. The analysis of this network leads to the following system:

v G

D

(a) (b) ()

Figure 1: (a) Simple network, the global equations of state of which do not exist. (b) VCR of
branch D. (¢) Hlustration of the solutions of system (1).

ip(t) = —vp(1)
(vp(t),ip(t)) € Gp

That means that (v, vp,ir,ip) is a solution of the network iff iy = —ip, vy = vp, and {vp,ip)
is a solution of (1)*. The point is that a tunnel diode is not current-controlled, namely, Gp5" is
not a function. Therefore, the analysis of (1) cannot be reduced to the analysis of some ordinary
differential equation (ODE).

We now observe the following:

(1)

(i) For any p € Gp \ {A, B} there is a local solution of (1) passing through p.
(ii) There is no solution of (1) passing through A, nor through B.

(iii) There are non-continuable solutions approaching A (resp. B) in backward (resp. forward)
time direction, “reaching” A (resp. B) at some finite time.



Because of these phenomena, A (resp. B) is called backward (rvesp. forward) impasse point [2].

In the following sections we prove the existence of mazimal continuated solutions, define several
classes of impasse points, examine relations between these classes, and give sufficient conditions for
a point to be an impasse.

In the last section the term pseudo limit point, a generalization of limit point [2], is introduced
and its relation to impasse points is investigated.

Our considerations include non-autonomous and degenerate DAEs as well as non-differentiable
solutions. Further, not any set occuring in the analysis of the DAEs we deal with is assumed to be
a manifold.

Throughout the paper we will not deal with “Jump Behavior”.

2 Basic Definitions

2.1. Definition (DAE, ADAE) Letn € N, m,k € Z,, X CR"Y C R™ be open setsand T C R
open and connected®. Let f and g be functions. If f: X xY xT —R* € C%and g: X xY x1T —
R* € €Y, the system

(1) = f(z(1), y(1),1)
0= g(a(t),y(1),1)

is called a Differential-Algebraic-Equation (DAE). 3
Iff: XxY —=R"cC’and g: X xY — RF € O the system

(2)

&= fle,y) 3)
0=g(z,y)
is called an autonomous Differential- Algebraic-Equation (ADAE). 3 a

2.2. Definition (Solution) Consider DAE (2) or ADAFE (3) and let (zo,y5) € X XY, and ty € R
(to € T in case of DAFE (2)). Let further x: [ — X € C°, y: I —Y € C°,
¢ = (x,y) is said to be a solution of (2) (resp. (3)) <=

(i) I CT (resp. I CR) is open and connected.
(i) v € C*
(i) Vier(#(t) = f(x(t), y(1), ) A 0 = g(x(1), y(1), 1))
resp. Vier(#(1) = f((1),y(1)) A0 = g(x(1), y(1))
The solution set S of (2) (resp. (3)) is defined by
S = {| ¥ is a solution of (2) (resp. (3))}

The C'-solution set Scr of (2) (resp. (3)) is defined by Scr := S NC*. Elements of Sc: are called
C'-solutions of (2) (resp. (3)).

!Throughout the paper we rely on the notation of [8], with only a few exceptions: GBI is the inverse relation
of Gp, i.e., 1G5'y :<= yGps. By (z,y) we denote the function M — X x Y: ¢t — (x(t),y(t)) if ©: M — X and
y: M —Y.

2N is the set of natural numbers, and Zy is the set of nonnegative integers. If i € Z4 and unless the following
abbreviation leads to misunderstandings, ¢’ and C*(E) are used instead of C*(E, F) and denote the set of i times
continuously differentiable (resp. continous) mappings from E in F.

* In case m =k = 0 we identify (2) and (3) with ODEs (t) = f(2(t),t) and & = f(z), respectively.



The solution set Sy, y.10) (resp. C'-solution set Sca 4y yo10)) Of (2) and (3) according to the initial
condition (xo, yo,t) is defined as follows:

S(@”D,?/u,fo) = {¢ S S| ¢(t0) = (x07y0)}
SCI,(x‘u,yn,to) = S(ﬂ?n,yu,tn) n Cl

Elements of Sizq.yote) (T€SP. S (2oyote)) @re called solutions (resp. Cl-solutions) of (2) and (3)
passing through (2, yo) at t,. O

2.3. Definition (Continuation of solutions) Consider DAE (2) or ADAE (3) and let S and
Sci be the sets defined in 2.2.. Let further a € 5.
0 is called

continuation of @ <= € SAaCg*

C'-continuation of @ (<=3 € Ser Aa C 3

o 1s called

non-continuable to the right <= Vsc5(a € f§ = supdom § = sup dom «)

non- C'!-continuable to the right <= Vses., (@ € B = supdom 3 = sup dom a)
non-continuable to the left <= Vges(a C f = infdom g = inf doma)

non- C'-continuable to the left <= Vses_, (a € f = inf dom § = inf dom «)

non-continuable <= Vses(a C = a =f)

non- C'-continuable <= VYges ,(a C = a = j) O

Obviously, non-continuability is equivalent to non-continuability to the left and to the right. Similar
to the case of ODEs [5], there exist maximal continuated solutions:

2.4. Lemma (Maximal continuated solutions) Consider DAE (2) or ADAE (3) and let S
and Sc: be the sets defined in 2.2.. Suppose that o € S (resp. « € Sci). Then

ds B is a non-continuable continuation of a
and

Js B is a non-C*-continuable C''-continuation of «,
respectively. d

Proof: £ be the set of continuations of a. Clearly, (£,C) is an ordered set (see Definition
A.1.). Let now (C,C) be any chain, C C E, and j := Uyee 7+

U, ecntedom~ V(1) contains exacly one element for all ¢ € |, dom 7, because (C, C) is a chain.
Therefore, the definition of 3 makes sense. Since 3 is a continuation of & and of any ~v e (C,itis an
upper bound of C in E. By Zorn’s Lemma (A.2.), there is a maximal element § of (£, C), which is
obviously a non-continuable continuation of a.
The case of C'l-continuations is done in exactly the same way. O

*Functions are considered to be sets of pairs of form (z, f()).



If we had defined solutions to be functiones over closed intervalls [4], a non-continuable solution
would not exist in general, not even in case of ODEs.

2.5. Definition (State set, Consistent Initial Value) Consider DAE (2) (resp. ADAE (3)).
Using the sets defined in 2.2., the state set P and the C''-state set Pc1 of (2) (resp. (3)) are defined

by

P:={zeXxYxT|5, #0} P:={(z,y) € X XY| Sz yo) # 0}
; resp. :
Pori= {Z eEX xY x T| bc’lyz # @} Por = {(m,y) €X x Y| éclv(xyyyo) 7£ @}

FElements of P and Pg: are called consistent and C''-consistent initial values of (2) (resp. (3)). O

3 Impasse Points

3.1. Definition (Impasse point) Consider DAE (2) (resp. ADAE (3)) and let Q := X xY x T,
p:=(20,Y0,%0) ER*"XR” XR (resp. Q=X XY, p=(20,9%) € R"XR™, and t, = 0). Using the
sets defined in section 2, p is called

impasse point (resp. C'-impasse point) of the 1st kind (IP-1, resp. C'-IP-1):<=

peg(0)\ P resp.  p€g(0)\ P
impasse point (resp. C'-impasse point) of the 2nd kind (IP-2, resp. C-IP-2):<—
pe(PNQ)\ P resp. pe€(PrnN@)\ Por)®

forward (resp. C'-forward) impasse point of the 1st kind (FIP-1, resp. C*-FIP-1):<=
p€g (0)\ PAIyes(supdomp = ¢, A }Llltlo ¥(t) = (20, Y0))
resp.

p€gH0)\ Por A HweSm(S"P domy =t; A t]l—»T?U P(t) = (20, Y0))

forward (resp. C'-forward) impasse point of the 2nd kind (FIP-2, resp. C*-FIP-2) <=
p € P AJyes(? is non-continuable to the right A sup dom ) =ty A thntl ¥(t) = (20, Y0))
resp.

p € Por A Jyes_, (1 is non-C'-continuable to the right A sup dom ¢ = 1o A tlmtﬂ ¥(t) = (29, Yo0))

backward (resp. C'-backward) impasse point of the 1st kind (BIP-1, resp. C-BIP-1):<—
p€g (0)\ PAIJyes(infdome =1, A th—»r?g »(t) = (20, Y0))
resp.
p€gt(0)\ Por A Jyes,, (infdom =1, A tlirgt P(t) = (20, Y0))
backward (resp. C'-backward) impasse point of the 2nd kind (BIP-2, resp. C-BIP-2):<=
p € P A Jyes(v is non-continuable to the left Ainf dom =ty A }LIItID (1) = (20, Yo))

resp.

p € Por A Jyes_, (¢ is non-C'-continuable to the left A inf dom ¢ = 5 A t]]r? P(t) = (xo, Yo))



d

In the sequel, the sets of impasse points of the first kind, of the second kind, of forward impasse
points of the 1st kind, of the 2nd kind, of backward impasse points of the 1st kind, and of the 2nd
kind (resp. the corresponding kinds of C'-impasse points) will be refered to by Iy, I, Iry, Iro,
IB,17 and IB,2 (resp. 101,17 101,27 I(,'l,F,u 101,F,27 Icl,B,17 and ICI,B,2)~

3.2. Lemma: Consider DAE (2) or ADAFE (3). Then
(i) I, Ulpy C 1, C I,
(i7) Icr i Ulcipr Clens Clony
(i) 1, C I,
(iv) Ips =15, =10
(v) (Icr paUlcrpa)NIcry =10 |
Proof: We prove the assertions only for DAE (2):

(i) Let p = (20, Y0,t0) € Ip1, then p € g71(0) \ P and Jy=(p yyes supdomp = 1o Alim,_,, 9(t) =
(z0,90), le., lim, . (2(t),y(t),t) = p. Since im(z,y,id |aomy) C P, we get p € P, ie.,
peyg™'(0),pgP,andpe P = pe(PNng (0)\PC(PNX XY XT)\ P = 1.

Let pe I, = (PN X xY xT)\ P. Since g~}(0) is closed (in X x Y x T) and P C ¢~ *(0),

weget PN X XY XT Cg 0)=peg (0)\ P=1.
(11) Equivalent to (i).
(i), (v) trivial.

(iv) Let, without loss of generality, p = (20,%0.%0) € Ip2 , @i Jto —c,to+ e[ — X XY € 5,
Pty —e,to[ = X xY €5 for some ¢ > 0, lim;,_, 9(t) = (29, Yo), and 1 be non-continuable
to the right.

Set ﬁ = <.Z,y> = Qb U §O|[to;fo+e[7 i'e'v
L v P(t) fort <t
ﬂ]to €,t0+5[—>)( XYt'_}{QD(t) otherwise [ *
Obviously, g € C° and 0 = g(x(t), y(t),t) for all ¢ € dom §.

We now have to show that € C'" and that #(t) = f(z(t), y(t),1) for all t € dom 5. The idea
is to deal with an integral equation

t
(1) = €(t) + [ F(e(r) mydr @)
to
instead of an ODE
E(t) = F(E(D)1) (5)
where F': X x T — R"” € C°. As is well known, (5) is equivalent to (4) in the following sense

[1, (6.5a)]:

®Here, P denotes the closure of P in R x R™ x R™ (resp. R™ x R™) endowed with the topology induced by some
norm. If P*is the closure of P in the space Q with the topology induced by R x R™ x R™ (resp. R™ x R™), one gets
PnNQ@ =P etc.



Let £: 1T — X € C°, T C T an open intervall, and ¢, € I. Then ¢ is a C'°-solution of (4) iff £
is a C''-solution of (5).

In the concrete, since 1) = By, is a solution of the DAE in question, we have for all
t € Jto — ¢, to[

t

o) =alts = 5)+ [ fa(r).y(r) )dr (6)

c
to— £

Since z, y, and f are continous, both sides of (6) are continous with respect to ¢ and hence,
(6) also holds for ¢ = #,. By substituting z(t, — §) we get

o(t) = alto) + [ f(a(r).y(r).T)dr (™)

for all ¢ € Jtg — &, tg].

Let ¢ = (Z,9). Then, for all t € ]ty — ¢, + €[, @ fulfills an integral equation analogous to
(7), which is, for t € [ty — €, t[, exactly the same as (7). Hence, (7) holds for all ¢ € dom
and thus, &(t) = f(z(t),y(t),t) also holds. So, 3 is a solution of the DAE in question in
contradiction to the assumption that 4 is non-continuable to the right. O

As we will see in this section, the kinds of impasse points defined above are in general different
from each other. We will show, at least, that I; # Iy (Example 3.9.), Ic1 1 # Icv 5 and Iy # I,
(Example 3.7.). Iy # Ip1 Ulp, and Ici 5 # Ica gy Ulcs gy is shown in [7, Example 2.11]. Further,
we see that (''-forward and C''-backward impasse points of the second kind do exist:

3.3. Example:

=1
0=y ((z—y)"+ f(y))

with f € €, flg_ = 0 and flg,\jo; > 0. Then, ¢: R — R?: ¢+ (¢,0) is clearly in Sc:, and we
have (0,0) € Pear. Further, v: R\ {0} — R*: ¢ = (¢,1) is in Sc1 as well and lim ¢(¢) = (0,0). Let
<0

(x,y) be a proper C''-continuation of ¢ to the right, i.e., supdoma > 0. Then z = id |4om. and
Visoy(t) = 0. Thus,

t) — t)—
lim 73/( )= y(0) =0 and lim 7?/( )= 9(0) = 1.
>0 t <o t
Hence, 1 is non-C''-continuable to the right and (0,0) is a C'-FIP-2. O

In case m = k = 0 we identify DAE (2) and ADAE (3) with ODEs @(t) = f(x(t),t) and & = f(2),
respectively. As is well known from the theory of ODEs, we get P = Po» = X X T (resp. P =
P = X)) in that case and thus, impasse points cannot occur. We consider that to be an important
difference between DAEs and ODEs. In the following lemma, situations are examined where the
DAE or ADAE in question is locally equivalent to an ODE in some sense:

3.4. Lemma: Consider DAE (2) (resp. ADAFE (3)) and let (xq,yo.ty) € X XY XT (resp. (xq,y) €
X xY). Then

(i) U eU((20,%0)) A Tn. v—veco (h(20,%0) = Yo A V(z,t)eUg(x,h(a?,t),t) =0)
= {(x,h(x,1),t)] (v,1) e U} C P °

6I/{(p) denotes the set of open neighbourhoods of point p with respect to the considered space.



(a) ()

Figure 2: (a) ¢7*(0) as in Example 3.3. (b) P as in Example 3.7., ¢7'(0) = (R x {0}) x R. (c¢)
¢7%(0) as in Example 3.9.

(i) U € U((zo,t0)) A T v—yecr (h(zo,t0) = Yo A V(e nyevg(z, h(z,t),1) = 0)
= {(z,h(z,1),t)] (z,t) € U} C Peu

resp.
(i) U € Ulz0) A3y yyeeo(h(za) = 4o A Voerg(z, h(z)) = 0) = {(z,h(z))| 2 € U} C P

(i) U € U(x0) A Tn. v_vecr(h(zn) = Yo A Veerg(a, h(2)) = 0) = {(z,h(z))| 2 € U} C P

Proof: Only the assertions concerning DAE (2) will be proved:

(i) Let (x,,t;) € U. Then (z1,t,) € Q@ x J C U, where J is an open intervall and ) C X is open.
Consider the ODE #(t) = f(x(t),t), where f: Q x J — R™: (e,t) — f(c,h(c,t),t) € C°.
Obviously, there is a solution ¢: I — @ € C' with ¢(¢;) = =, (I C J is an open inter-
val). It is easy to show that ¢¥: 1 — X X Y:t — (¢(t),h(¢(t),t)) € S [7] and hence,
(p(ts), h(p(tr), 1), 1) = (w1, A1, 1), 1) € P.

(ii) Assume that h € C''. In addition to (i) we have h(¢(+),:) € C' and hence, 1) € Sc. O

Since h does not need to be unique, Lemma 3.4. is slightly more general than the statements
in [2, Lemma 1 and 2], as can be easily seen from Example 3.3..

3.5. Remark: There are simple sufficient conditions for the existence of a function h as required
in Lemma 3.4.:

Consider DAE (2) (resp. ADAE (3)) and let p = (20, Yo, to) € X XY XT (resp. p = (29, %0) € X XY).
Then

(i) V € U(p) AN D,g exists as a partial F-derivative on V' AD,g is continous at p AD,g(p) is
surjective = There is a U € U((xq,10)) (resp. U € U(xo)) that meets (i) in Lemma 3.4..

(il) V eU(p)Nglv € C' ANDsg(p) is surjective =—> Thereis a U € U((zo, o)) (resp. U € U(zg))
that meets (7i) in Lemma 3.4.. a



Proof: The aim is to prove the existence of certain implicit functions. Concerning (ii), [8,
Theorem 4.H] immediately applies, so we show (i) for DAE (2):
Let V) := ker Dag(p) and G: X x T x Y, x Y2 — R*: (2,¢,y1,y2) — g(z, 90+ y1 +y2,t). Obviously,
D,G exists as a partial F-derivative, namely, DaG(2,t,41,92) = Dag(®,y0 + 91 + y2, )|y for all
(z,t,91,¥2) in a neighbourhood of (z,%,0,0) corresponding to V. Further, D,G is continous at
(20,t0,0,0) and D,G(xg,10.0,0) is bijective. Applying the Implicit Function Theorem B.1., we get”

EerZ/{((xg,tg,O))E”fL: U—»Yl*eCo(iL(xov lo, 0) =0 A V(:a:,t,yl)eUG(ajv 1,91, iL(CL‘, 2 2/1)) = 0)7

ie., V(zytyyl)e,jg(w, Yo+ y1 + B(w,t,yl),t) = 0. Set h(x,t) :==yo + ﬁ(w,t,O) for («,t) in some neigh-
bourhood U of (z,1). a

Using ideas from Lemma 3.4. and Remark 3.5., one could easily find sufficient conditions for local
uniqueness of solutions of DAEs and ADAEs. Instead of doing so, we will focus on criteria for a
point to be an impasse:

Let us consider ADAE (3), let p € ¢7'(0), and assume that Dg(p) has full rank. Then ¢g='(0)
is locally a smooth submanifold of R” x R™ and ¢(,) has to lie in the tangent space of g=*(0) at
p for any C''-solution ¢ = (z,y) passing through p at ¢, [6]. So we have

@(to) = (f(p). ¥(lo)) € ker Dg(p)
and hence

Dyg(p)f(p) € im D,g(p). (8)

Conversely, if (8) does not hold, p is clearly a C'*-IP-1. As we will see in the sequel, this conclusion
is valid whether or not ¢='(0) is a manifold.

3.6. Definition: Consider DAFE (2) (resp. ADAFE (3)), let p € ¢g='(0), and assume that g is C*
on some neighbourhood of p. Then the tangential property s defined as follows:

Teg(p)  Dig(p)f(p)+ Dsg(p)l € im D2g(p)

resp.

Tg(p)  Dig(p)f(p) € im Dyg(p) O

3.7. Example:

ilzl
iy =1+ Yy’
0:$2

Obviously, for all (z;0.90) € R x R satisfying z, o < 0and @15+ 93 =0, ¢: Jo1 0, —21 [ = R*XR

with
=1 if yo >0
e(t) := ((331,0 +1,0), /=210 — { -1 t)tl?{(()erwise )

is in Sc1, and hence, {((z1,0),y)] 21 < 0Az; +y* =0} C Pea.

Let now ((z1,22),y) be in S. Then 2, = 0 and, by that fact, 0 = &, = 2, + y*, and hence,
Pe: CH{((21,0),9)] 21 +y* = 0}.

Assume now ((z1,22),y) € So,0y,0,0)- Then, there is some ¢ > 0 that |—e,¢[ C im 2, because
#1(0) = 1. Contradiction.

So, we get:

9

7 .
3! means “There is one and only one ...



(i) P=Por ={((21,0),9) ER*XR|z; +y* =0 Az < 0}
(ii) Iry = Icrpy = Iy = Ier» = {((0,0),0)}
(iti) Ig1 =Icr g1 =Ips=Icips=1Ips=1Ic1ps=10
(iv) i =1Icra = g7 (0)\ P ={((21,0),y) ER* xR 21 2 0V 2y +y° # 0}
Note that, although ((0,0),0)isin Iy, as well as in I¢1 gy, it has the tangential property 7'¢((0,0),0):
D19((0,0),0)£((0,0),0) = 0 € {0} = im D2g((0,0),0)
Therefore, this example contradicts [2, Lemma 3], which conjectured that®
p is an impasse point = —~Tg(p).

a

3.8. Lemma ([7]) Consider DAE (2) (resp. ADAFE (3)), let p € ¢g=*(0), and assume that g is C*
on some neitghbourhood of p. Then

“Tg(p) = peley.
0

The proof [7] is a simple application of the chain rule. Further, Lemma 3.8. is a special case of
Lemma 3.10..

Note that, under the assumptions of Lemma 3.8., p does neither need to be in I; (Example
3.9.), nor in Ic1 5 (Example 3.7.).

3.9. Example:
=1

0=9"—=z

Set h: R — R:a — /[a]sign(z) and h := hlg\(oj. By Lemma 3.4.(ii) we get {(z,h(z))| « €
R\{0}} = ¢='(0)\{(0,0)} C Pc:,since h € C'. By Lemma 3.4.(i) we have (0,0) € P, since h € C°.
By Lemma 3.8. we get that (0,0) ¢ Pc:, because Dg(0,0)(z,y)= —2 and D,g(0,0)f(0,0)= —1¢
{0} = im D»g(0,0). So we have Por = ¢=*(0)\{(0,0)}, P = ¢g7*(0), Ic: 1 = {(0,0)},and [, = 0. O

In the situation of Lemma 3.8., no solution passing through (¢, yo) at #, is continously differentiable.
Concerning Example 3.9., it is easy to show that a solution passing through (0,0) at 0 could not
even be Lipschitz continous on some neighbourhood of 0. As the following statement shows, this
is not an accidental observation:

3.10. Lemma: Consider DAFE (2) (resp. ADAE (3)), let ||-|| be some norm on R™, p = (¢, Yo, o) €
g~ H0) (resp. p = (zo,y0) € g7H0), to € R), and assume that g is C* on some neighbourhood of p.
If p does not have the tangential property Tg(p) and (x,y) € S(vyyo,t0), then

=l
t—to |t — tp]

8We could use here the procedure given in [6] to get Po1, but want to get P as well.
°g(p) = 0 A=Tg(p) can be shown to be equivalent to p € Ss, with S as in [2].

10



Proof: The statement is proved for DAE (2) only:
Assume there is some L € R and some sequence (t,)new, that t, € domy \ {tx} for all n, and
t, — tg, and

[N
| Al

contrary to the assertion, where Ay = y(t) — yo, Ay, = y(t,) — to, At =1 —ty, and At,, =t, — 1.
Choose A > 0 that : B(tg,A\) x Y — R*: (¢,2) — g(x(t), 2,t) is in C. Obviously, n(¢, y(t)) = 0 as
long as t € domy N B(tg, A), and

In view of the definition of the F-derivative, one yields'®

Ves03rsoYie ssenittovon 1101 2) = Dg(p)(AL- f(p). 2 = yo, At)|| < e[[(At, 2 — o).

Especially for z := y(t,) and t := 1, we get
VesodvenVnsn [[Dg(p)(Aty - f(P)s Ayn, Aty)|| <e||(Aty, Ay, )|| <eM|AR,|

vnEN S L (9)

for some M > 0, the right inequality of which is yielded by (9) and equivalence of norms [3, 3.20.].
Thus,

Ayy,
N | <eM (10)

VesodnenVnsn |0 + Dag(p)

bpi=
where v := Dig(p)f(p) + D3g(p)1, and further'
. Ay,
6, = dist(v, —D2g(p) Aty )
> 1 .
> glellgm dist(v, D.g(p)§)

> dist(v,im Dyg(p)) (11)

A=

A is positive since im(D,g(p)) is a closed subset of R* not containing v. By (10) and (11), 0 <
A < eM holds for all ¢ > 0. Contradiction. a

4 Pseudo Limit Points

In this section we define the term pseudo limit point, a generalization of limit point ([2], Appendix
D), and examine the relation between pseudo limit points and impasse points.

4.1. Definition (Pseudo limit point) Let M C R x R™ and (Ao, y0) € M. (Ao, o) is called
right (resp. left) pseudo limit point (PLP) of M <=

Veec(ogmn (€(0) = (Ao, 90) == Fisoma(e(t)) < Ao)

Tresp.
Veeoogmn (¢(0) = (Ao, 90) = Fisoma(e(t)) = Ao)
where Tt R X R™ — R: (A, y) — A a
%For simplicity, we denote any used norm by ||-||, which cannot lead to misunderstandings here.

M dist denotes the metric according to the norm in R¥. dist(A, B) is the distance between the sets A and B [8],
dist(z, B) := dist({z}, B).

11



4.2. Definition (Cut mapping) Consider DAE (2) (resp. ADAFE (3)) and let p = (29, yo,10) €
g7 1(0) (resp. p = (29,90) € g (0)). Let further I C R be open and connected, so that 0 € T and
o+ 1- f(p) CX. In case of DAFE (2), let in addition to + I CT. The mapping

h:lxY —RF: (A y)— glzo+ X f(p),y, o+ A)

resp.
h:TxY —RE: (N y)— glzo+ X f(p),y)

is called cut mapping of (2) (resp. (3)) at p. O
4.3. Remark:

(i) The property of a point to be a PLP of a cut mapping is independent of the choice of I in
Definition 4.2..

(ii) Let h be a cut mapping of ADAE (3). Then, any limit point ([2], Appendix D) of A=*(0) is
clearly a PLP. The converse is not true, not even if A4='(0) is a C'*-curve [7, Example 3.3]. O

We now give a criterion about the relation between impasse points and pseudo limit points:

4.4. Theorem: Consider DAE (2) (resp. ADAE (3)) and let p = (2o,y0,t0) € g7*(0) (resp.
p = (z0,%) € g71(0)). Let further h be a cut mapping of (2) (resp. (3)) at p and the following
conditions be satisfied:

(i) g is C' on some neighbourhood of p
(ii) p does not have the tangential property Tg(p)
(17i) rank Dog(p) =k — 1

Then
(0,y0) is a left or a right PLP of h™*(0) = p € I,.

d

The trick of the proof of the foregoing theorem is to assume the existence of some (2, ) € Sz, yo.t0)
and then to apply an Implicit Function Theorem to the mapping

G:(s,t,2)— g(xo+ s f(p)oy(t+to)+ 2,8+ 1)

Note that, in general, GG is not differentiable on some open neighbourhood of (0,0, 0). So, the longer
part of the proof of Theorem 4.4. is to show the F-differentiability of G' at (0,0,0). Therefore, we
put this part into a separate lemma:

4.5. Lemma: Consider DAFE (2) and assume that g is C' on some open neighbourhood U of
p = (zo, Yo, to) € g71(0). Let (x,y) € Sp, 1 := dom(z,y), £ := R x R x (ker D2g(p))t, W C E an
open ball with center (0,0,0), so that t + to € I and (xg+ s - f(p),y(t+to) + 2,5+ to) € U for all
(s,t,z) € W. Set

G:W =R (s,t,2) = glao+ s+ f(p),y(t +t0) + 2,8+ to).
Then

(i) G € C® and G(0,0,0)=0.

12



(ii) G is F-differentiable at (0,0,0).

(iii) D,G(0,0,0)t = —Dyg(p)f(p)t — Dsg(p)t.

(v) Dy 3G exists as a partial F-derivative on W, is continous, and
D15G(0.0,0)(s,2) = Dig(p)f(p)s + Dsg(p)s + D2g(p)=. O

The proof can be found in Appendix C.

Proof (of Theorem 4.4.) The proof is done for DAE (2) only:
Assume (z,y) € S, contrary to the assertion and let I, E/, W, and G as in Lemma 4.5.. Since
D, 5G(0,0,0) is bijective **(has rank k because of (ii) and (iii)), the Implicit Function Theorem
B.1. is applicable and one gets
37’,7‘0>OvtEB(t0,7’g)3!(:S,Z)EB(O,T)G(87t7 Z) = 0.
In the following we denote the point (s, z) corresponding to ¢ by (s(t),s(t)), i.e.,
glzo+ s() f(p),y(t + to) + 2(t),s(t) + to) = 0.

Further, (s, z) is continous on some neighbourhood of 0, F-differentiable at 0, and

D(s,2)(0) = =Dy 5G(0,0,0)~" 0 D,G(0,0,0) = — (v 5 DQg(p)>_ (=)

1

0
where v := Dyg(p)f(p)+ Dsg(p)l. So, it follows that $(0) = 1 and hence
S soVecton (5(0) > 0 A GUs(1)st, () = (20 4 (P y(t 4 t0) + =(0)s5(0) + 1) = 0)),

ie., (s(t),y(t+ 1)+ 2(t)) € h=1(0) for all ¢ € [0,%,], contrary to the hypothesis that (0,y,) is a
right PLP of 27'(0). Nor can it be a left PLP by similar arguments. Contradiction. O

4.6. Remark: (i) If we substituted (iii) in the foregoing Theorem by rank D,g(p) = k, the
assertion would trivially hold: Dsg(p) is bijective in that case and by the Implicit Function
Theorem, (0, yo) could not be a PLP of h=1(0).

(ii) Condition (ii) in Theorem 4.4. cannot be omitted (Example 4.7.).
(iii) The ”<="-part of Theorem 4.4. would not be true, as Example 4.8. shows.

(iv) Although condition (iii) of Theorem 4.4. is used in its proof, examples which fulfill all condi-
tions except (iii) and for which the assertion of Theorem 4.4. is not valid, are not known.
a

20bviously, D2 is also bijective at (0,0,0), but does not exist on some open neighbourhood of (0,0,0). So we
have to go indirectly.
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4.7. Example ([7])

il = 1
iz = 2.T1 (12)
0=ay— (2, + 9%

Consider the point ((0,0),0). Obviously, ¢: ]—1,1[ = R* X R:t — ((¢,*),0) € Sc1 ((0,0),0,0), and
hence, ((0,0),0) € Pc.
As can be easily seen,

h:RxR—=R:(\y)——(A+77)

is a cut mapping of (12), and (0,0) is a right limit point as well as a right PLP of h=%(0) (see
Fig. 3(a)). Theorem 4.4. is not applicable, since ((0,0),0) does have the tangential property.

Further, this example contradicts the ”<="-part of [2, Theorem 1]. O
A A
h=(0)
y Y
h='(0)
(a) (b)

Figure 3: (a) h~*(0) with A from Example 4.7.. (b) A~*(0) with A from Example 4.8.. (¢) Illustration
of step (iv) of Example 4.8..

4.8. Example:

.fl - 1
,f2 = 2(E1 (13)
0= Tq —g}(zz,y)

where

g(xa,y) = 704(362,10) dw

and
8 i
_ 11w < .
a(acng) w 1+(1+$§) CcOS (i) ifw>0

We now observe the following;:

(i) The right hand sides of (13) are continously differentiable:
« is clearly continous at R x (R\ {0}). Let now (z,,w,)nen be some sequence in R X R

14



(i)

(iif)
(iv)

converging to (zg,0) for some z; € R. Then, |a(z,,w,) — a(z,0)] < w2(2+ z2), and hence,
o is continous on R X R. Further, D« exists,
D [0 ifw<0
1@y, w) = 2z,w? cos (&) otherwise [ 2
and hence, D;a is continous on R x R. So, we get that g € C* ([3, 8.11., Exercise 1]).

(0,0) is neither a right nor a left PLP of h='(0), if A is a cut mapping of (13) at ((0,0),0):
Clearly,
h:RXR—=R:(A\y)— A-g(0,y)

is a cut mapping of (13) at ((0,0),0) (see Fig. 3(b)). «(0,-) is non-negative and is equal
to 0 on a countable set only. Thus, §(0,-) is strongly monotone increasing. Hence, it is an
injective, open mapping, and thus, §(0,-)~* is continous and its domain contains some open
ball with center 0.

e:R_\{0} = R?xR: 1~ ((t,%),—/—=3t) € Sc: and %i_r»r(l)(p(t) =((0,0),0).

There is no solution passing through ((0,0),0) (see Fig. 3(c) for illustration):
Assume ¥ = ({x1,22),¥) € S((0,0),0,t,) for some #;, € R, contrary to the assertion. Then:

(a) 23(t) = x5(t) holds for all ¢t € dom ¢: )
Set 8(t) 1= ao(t) — x3(t), then 6 € C*, 6(0) = 0 and 6(¢) = 0 for all ¢t € dom .

(b) Let, without loss of generality, dom = Jt; — ¢,y + €] for some t5 € R and some ¢ > 0.
Then we have

t—1y = / a((t —to)*,w) dw (14)

o

for all ¢t € dom .

(¢) JesettotarelInezs e € JE y(t):
Let t € Jto, to + €[ and y(t) < 0. By definition of a, one gets 21(t) =t —t, = $33(1) < 0.
Contradiction. Let now t € Jtg, %y + [ and y(¢) = 0. Then, 2,(¢) = 0. Contradiction.
Hence, there is some #; € Jtq, 1o + €[ that y(t,) € ]0, 5=[. Set

= S et D
k 14 sup{f] € Z| y(tl) = (2(]‘|‘ 1)71'}

Obviously, k € Z and k > 2, as well as < y(t,) and

1
(2k+1)7

1
) < ——
) S G Ty.
<2
T (4k - 2)m
2
<
~(2k+142k-3)r
L2
= (2k+ 1)m

(d) EIsz]tD;tl[y(la) = L(;_li
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(e) Set wg := . Then 3y, ejwo y ) Vwefwo,w,] COS (i) < 0.

(Zkil)w
(f) a((- — ty)* w) is monotone decreasing for all w € [wo, w,]:

al(t —to)*,w) = w*(1+ (14 (1 = 19)") cos (%))

——’
<0
Especially for t € [t,,t;] one gets
a((t—to)*w) < a((ty — t)*, w). (15)
(8) Fuwselwo,wi[ Ve elws,wa) (T2 — 19)*, w) < 0, since a € C°.
(h) By (iv-f) we have Yy efwo.wa]Veepts, c((t — o), w) < 0.
(1) Feseraaay(ts) = wo and Iy eqes o (y(ts) = wo.
(j) By (14) we get
t4 —_ t3 = (t4 —_ to) —_ (t3 —_ to)
_ /a((t4 1)’ w) dw — /a((t3 — 1), w) dw
0 0
_ /a((t4 1), w) — al(ts — 1)", w) dw + /a((t4 1), w) dw
—_———
0 <0 by (f) wo <0 by (h)
< 0.

Contradiction.

So, ((0,0),0) is a FIP-1 of (13), but (0,0) is not a PLP of h=!(0), which contradicts the ”=-"-part
of [2, Theorem 1]'3. Note that ((0,0),0) does not have the tangential property, i.e., conditions (7),
(i1), and (7i7) in Theorem 4.4. are fulfilled. O

Appendices

A Ordered Sets and Zorn’s Lemma

A.1l. Definition (Order, Ordered set) Let A be a set and R C A X A a relation. R is called
order on A and (A, R) is called ordered set :<—=

VicaaRa (reflexivity)
aRbANODRa — a =0 (antisymmetry)
aRbAbRc = aRc  (transitivity)

Let now (A, R) be an ordered set.

m € A is a maximal element of (A, R) <= (mRa = a = m).

(A, R) is called chain :<= VY, yca(aRb V bRa).

Let C' C Aand (C,RN CxC) be a chain. uw € A is called upper bound of Cin (A, R) :<=V.cccRu.
(I

13[7, Example 3.6] is a counterexample of the ”==-"-part of [2, Theorem 1], which has more practical importance
and is even C*.
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Throughout the paper we accepted the Aziom of Choice [8] as one of our axioms. In that case, the

following holds:

A.2. Lemma (Zorn’s Lemma [8]) Let (A, R) be an ordered set for which every chain (C, RN
C x C) with C C A has an upper bound in A, then there is a maximal element of (A, R). O

B An Implicit Function Theorem

B.1. Theorem: F, (), Z be banach spaces over R, and U be an open neighbourhood of (zq,ys) €
E x Q. Let further F: U — Z and the following conditions be satisfied:

(i) F(xo,90) =0
(ii) D,F exists as a partial F-derivative on U and D, F (2, ) is bijective
(iii) F and Dy F are continous at (o, Yo).

Then

(a) Elr,ru>0vxeB(:cg,ro)ﬂlyeB(yo,r)F(xv y) =0.
In the following, the corresponding mapping x — y is denoted by y(-).

(@) y(-) is continous at x,.

(¢) If F' is continous on some neighbourhood of (x4,y,), then y(-) is continous on some neigh-
bourhood of x,.

(e) If I is F-differentiable at (zq.yo), then y(-) is F-differentiable at xy and
Dy(xo) = =Dy F(o,y0)~" 0 D1F (20, 30)- u

Proof: (a) and (c) are exactly the same as the corresponding assertions of [8, Theorem 4.B].
We have to deal with (@) and (e):

(@) Assume that there is some sequence (@, )nen in B(zg, 7o) with @, — o, but y(z,) 4 vo,
contrary to the assertion. Then, there is a subsequence (2, )ren of (2, ),en and some € > 0 that

Veeny(@n,) & B(yo. €). (16)

Now, apply (a) t0 F|p(so,re)xByo,e):

35 700V B0, IgeByan F (2, §) = 0. (17)
In the following, the corresponding mapping = — 7 is denoted by (-).
We find some ¢ € N with z,, € B(x, ), since klim T,, = To. By (17) we have j(2,,) € B(y,7) C
B(yo,e) € B(yo,r) and F(z,, ,9(2,,)) = 0. Thus, by (16), we have found two different zeros,
(Zn,,y(,,)) and (2, ,§(z,,)), of F. with x, € B(xy,ry) and y(z,, ), #(z,,) € B(yo.r). Contra-
diction.
(e) Let Az := 2 — xy and Ay := y(z) — yo. We know that y(-) is continous at zq by (@). Further,

F is F-differentiable at (2q,yy). Thus, for any ¢ > 0 there is a & > 0 so that for all x € B(x,4)
the following is true:

| (2, y(2)) = F(wo,y0) =D F (20, yo)(Az, Ay)|| < el|(Aw, Ay)l].
—_— ——

=0 =0
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From [8, Prop. 4.14.a] it follows
[|D1F (o, y0)Az + DaF (20, y0)Ay|| < €]|(Az, Ay)]|.
Dy F(zg,y0)" is continous by Banach’s open mapping Theorem [8]. Thus

D2 F (20, 90)™" 0 Dy F(wo, yo) Aw + Ayl| <& [|DoF (o, 30) '] [I(Aw, Ay)-
—_———

M=

The aim is to get the right hand side of the foregoing inequality free of Ay:
We first choose [[(Az, Ay)|| := [|Az|| + ||Ay]| [3, 3.20.] and obtain

I1D2F (20, y0) ™" © D1 F(w0,90)Az + Ay|| < eM(||Az|| + [|Ay]). (18)

From that it follows
Ay|| < || D2 F (20, yo)_1 o Dy F(zo, y0)Az + Ayl + ||D2F(w0,y0)_1 o Dy F(xg, yo)Az||
<eM(|Az|| + [ADI) + [[1D2F (20, y0) ™" 0 DiF(x0,90)| - [|Az].

We assume e M < % without loss of generality, and it follows

1 1
1Ayl < SlIAzl + SIAYlL +[[D2F (w0, 90)™" 0 DiF (o, o) - [|Ax]

and hence
1Ayl < [JAz]| - (14 2 [[DsF (20, yo) ™" 0 D1 F (20, 90)l]) -

From (18) we get
D2 F (0, y0)™" 0 DiF (20, o)Az + Ayl < eM || Azl - (2 + 2 [[DoF (w0, y0) ™" 0 DiF (20, %0)])

as long as © € B(zg,d), and the proof is complete. O

C Proof of Lemma 4.5.

C.1. Lemma: I, I’ be banach spaces over R, f: U — F € C', U C K open, V an open, convez,
nonempty set, V.C U. Then

Vaproev[[f(0) = fla) = Df(wo)(b =)l < |Ib—alfsup [ Df(e) = Df(zo)]
O

Proof: Since V is convex, we have S := co({a,b}) C V. By [3,8.6.2.] and S C V one gets the
assertion'®. O

Proof (of Lemma 4.5.) (i) trivial.

(i) We set v := Dyg(p)f(p) + Dsg(p)l € R¥, z, := x(t + to), v := y(t + to), ||(s,t,2)]] :=
[s| + |¢| + [|2]] [3, 3.20.], and show that

Va>03&>0v(s,t,z)eB(0,6) ||G(57tv Z) - T(SJ,Z)H < €||(8,t,2’)|| (19)

H:=

"co(M) denotes the convex hull of M.
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for T(s,t.z) := (s — t)v 4+ Dag(p)z:
Let ¢ € ]0, 1] and choose 8’ > 0 so that B(p,6’) C U and

sup [[Dg(q) = Dg(p)ll <« (20)

4€B(p,é

This choice is practicable because g € C'(U). Let b := (zy + s+ f(p),y: + 2,8 + o) and
a:= (¢, Y1, t+ to). Then, there is some é > 0 so that a,b € B(p, ') and

e —wo = - f(p)|| < eltl (21)

as long as (s,t,2) € B(0,6) (because of continuity and differentiability, respectively). From
(21) it follows

|20 = 2o —s- f(P| < [lee — 2o =1~ f(P)|| + (s = ) S (D)l
<eltl+[s =t -l F - (22)
Set
K :=G(s,t,2)— Dg(p)ao+s- f(p) —ay,z,5— 1)
= G(s,1,2) = s - v+ Dag(p)t + Dig(p)(z: — 20) = D2g(p)z.
Then, by (20), (21), (22), and Lemma C.1. one gets
K| < ell(zo+ 5+ f(p) = 24, 2,5 — 1)
<e(l(@e—ao—s- I+ N2l +1s = t])
< et +els — o [LF P+ ezl + |s — 2]
<eM-|(s,t, )|

for some M > 0 and all (s,t,2) € B(0,6). So, by definition of H, we have
H = |G(s,t,2) = 5 -0 = Dyg(p)z + Dig(p)f(p)t+ Dsg(p)t]]

= [|1K = Dyg(p)(e: = z0) + Drg(p) f ()]
SAEN+ [1Drg (- [l2e = 20 = 2+ f(p)
S K[+ 1Dwg(p)ll - elt]

H < eM-|(s.t,2)]

as long as (s,t,2) € B(0,6).

(iii) Set s = 0 and 2z = 0 in (19).

(iv) D; 3G exists as a partial F-derivative on W by the chain rule [8, Prop. 4.10.(a)] and is

continous.

Setting ¢ = 0 in (19) completes the proof. O
D Limit Points
D.1. Definition (Limit point [2][7]) Let h: R x R™ — R™ € C°, (XA, y0) € h7'(0). (Xo,40) is
called
right limit point of A7'(0) <= Inver((re,yony N NAT(0) N (Ao + R4\ {0}) X R™) =
left limit point of 271(0) <= InveurrowonN NA7H0) N (Ao — R4\ {0}) x R™) = O

As shown in [7, Lemma A.2], this definition is equivalent to that given in [2].
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